We study the dynamics of the chiral phase transition expected during the expansion of the quark-gluon plasma produced in a high energy hadron or heavy ion collision, using the $O(4)$ linear sigma model in the mean field approximation. Imposing boost invariant initial conditions at an initial proper time $tau_0$ and starting from an approximate equilibrium configuration, we investigate the possibility of formation of disoriented chiral condensate during the expansion. In order to create large domains of disoriented chiral condensates low-momentum instabilities have to last for long enough periods of time. Our simulations show no instabilities for an initial thermal configuration. For some of the out-of-equilibrium initial states studied, the fluctuation in the number of particles with low transverse momenta become large at late proper times.