Do you want to publish a course? Click here

O(alpha_s) Longitudinal Spin Polarization in Heavy-Quark Production

56   0   0.0 ( 0 )
 Added by Michael Tung
 Publication date 1994
  fields
and research's language is English




Ask ChatGPT about the research

The massive one-loop {it QCD} corrections to the production cross sections of We present the massive one-loop {it QCD} corrections to the production cross sections of polarized quarks in the annihilation process $e^+e^-to qbar{q}(g)$ for bottom, top, and charm quarks. From the full analytical expressions for the production cross sections, Schwinger-type interpolation formulae for all parity-parity combinations $(VV, V!A, AA)$ are derived. The parity-odd interpolation formula contains the correct limit for vanishing quark masses taking into account a residual coupling of left- and right-chiral states in the massless theory. Numerical results for the total cross section and the longitudinal spin polarization demonstrate the accuracy of the interpolation formulae.



rate research

Read More

We present the full O(alpha_s) longitudinal spin-spin correlations for heavy-quark pair production at e+ e- high-energy colliders in closed analytical form. In such reactions, quark and antiquark have strongly correlated spins, and the longitudinal components are dominant. For the explicit computation of the QCD bremsstrahlung contributions, new phase-space integrals are derived. Explicit numerical estimates are given for t t_bar and b b_bar production. Around the Z-peak, QCD one-loop corrections depolarize the spin-spin asymmetry for bottom quark pairs by approximately -4%. For top pair production, we find at 350GeV a 0.6% increased polarization over a value of 0.4 in the longitudinal correlation. For more than 1 TeV the O(alpha_s) corrections enhance depolarization to -2% in the top-pair case.
434 - S. Groote , J.G. Korner , B. Melic 2012
We present a detailed investigation of the NLO polarization of the top quark in t t-bar production at a polarized linear e^+ e^- collider with longitudinally polarized beams. By appropiately tuning the polarization of the beams one can achieve close to maximal values for the top quark polarization over most of the forward hemisphere for a large range of energies. This is quite welcome since the rate is largest in the forward hemisphere. One can also tune the beam polarization to obtain close to zero polarization over most of the forward hemisphere.
61 - M.M. Tung , J. Bernabeu , 1996
We present a new derivation of the O(alpha_s) angular distribution of the outgoing $q$-quark in the production process $e^+ e^- togamma,Zto q,bar{q}(g)$. In our calculation, we express the three-particle phase-space integration of the gluon-bremsstrahlung process in terms of a general set of analytic integral solutions. A consistent treatment of the QCD one-loop corrections to the axial-vector current deserves special attention. This is relevant in the derivation of the forward-backward asymmetry predicted by the standard model. Finally, we provide the full analytical solutions for the differential rates in closed form and conclude with numerical estimates for bottom and top quark production.
61 - S. Groote , J.G. Korner , 1995
We calculate the longitudinal contribution to the alignment polarization $Pl$ of quarks produced in $e^+e^-$ annihilation. In the Standard Model, the longitudinal alignment polarization vanishes at the Born term level and thus receives its first non-zero contribution from the $O(as)$ tree graph process. We provide analytical and numerical results for the longitudinal alignment polarization of massless and massive quarks, in particular for the recently discovered top quark.
We calculate the next-to-next-to-leading order ${cal O}(alpha_s^4)$ one-loop squared corrections to the production of heavy quark pairs in quark-antiquark annihilations. These are part of the next-to-next-to-leading order ${cal O}(alpha_s^4)$ radiative QCD corrections to this process. Our results, with the full mass dependence retained, are presented in a closed and very compact form, in the dimensional regularization scheme. We have found very intriguing factorization properties for the finite part of the amplitudes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا