No Arabic abstract
We study vector boson pair production at $LHC$ and $SSC$, taking into account the effects generated by the anomalous vector boson and Higgs couplings induced by the operators ${cal O}_W$ and ${cal O}_{UW}$, which are the only dim=6 operators preserving $SU(2)_c$. These operators lead to enhanced production of transverse vector bosons, as opposed to the enhanced production of longitudinal gauge bosons, induced in case $M_Hgsim 1 TeV$, by dim=4 terms already existing in the Standard Model lagrangian. For vector boson pair masses larger than $1 TeV$, we establish very simple approximate expressions for the standard as well as the non-standard helicity amplitudes for $qbar q$ annihilation and vector boson fusion, which accurately describe the physics. These expressions should simplify the experimental search for such interactions. We finally discuss the observability and the disentangling of these interactions.
We compute the top quark contribution to the two-loop amplitude for on-shell $Z$ boson pair production in gluon fusion, $gg to ZZ$. Exact dependence on the top quark mass is retained. For each phase space point the integral reduction is performed numerically and the master integrals are evaluated using the auxiliary mass flow method, allowing fast computation of the amplitude with very high precision.
We present the two-loop QCD corrections to the amplitude of the Higgs production associated with a $Z$ boson via the bottom quark-antiquark annihilation channel with a non-vanishing bottom-quark Yukawa coupling. The computation is performed by projecting the D-dimensional scattering amplitude directly onto a set of Lorentz structures related to the linear polarisation states of the $Z$ boson. We cross-check the finite remainders through a computation based on conventional form factor decomposition. We show that for physical observables, an ultimate D-dimensional form factor decomposition of amplitudes is not necessary which has a huge potential to simplify a multiloop computation. We compute numerically the resulting cross sections under the soft-virtual approximation to NNLO and find it three orders of magnitude smaller than that of the s-channel.
We compute the contribution of third generation quarks ($t, b$) to the two-loop amplitude for on-shell $W$ boson pair production in gluon fusion $gg to WW$. We present plots for the amplitude across partonic phase space as well as reference values for two kinematic points. The master integrals are efficiently evaluated by numerically solving a system of ordinary differential equations.
The production of pairs of Higgs bosons at hadron colliders provides unique information on the Higgs sector and on the mechanism underlying electroweak symmetry breaking (EWSB). Most studies have concentrated on the gluon fusion production mode which has the largest cross section. However, despite its small production rate, the vector-boson fusion channel can also be relevant since even small modifications of the Higgs couplings to vector bosons induce a striking increase of the cross section as a function of the invariant mass of the Higgs boson pair. In this work, we exploit this unique signature to propose a strategy to extract the $hhVV$ quartic coupling and provide model-independent constraints on theories where EWSB is driven by new strong interactions. We take advantage of the higher signal yield of the $bbar b bbar b$ final state and make extensive use of jet substructure techniques to reconstruct signal events with a boosted topology, characteristic of large partonic energies, where each Higgs boson decays to a single collimated jet . Our results demonstrate that the $hhVV$ coupling can be measured with 45% (20%) precision at the LHC for $mathcal{L}=$ 300 (3000) fb$^{-1}$, while a 1% precision can be achieved at a 100 TeV collider.
We present a precise and efficient computation of the two-loop amplitudes entering the Higgs boson pair production process via gluon fusion. Our approach is based on the small-Higgs-mass expansion while keeping the full dependence on the top quark mass and other kinematic invariants. We compare our results to the up-to-date predictions based on a combination of sector decomposition and high-energy expansion. We find that our method provides precision numeric predictions in the entire phase space, while at the same time is highly efficient as the computation can be easily performed on a normal desktop or laptop computer. Our method is valuable for practical phenomenological studies of the Higgs boson pair production process, and can also be applied to other similar processes.