Do you want to publish a course? Click here

Planck Scale Effects on the Majoron

57   0   0.0 ( 0 )
 Added by ul
 Publication date 1992
  fields
and research's language is English




Ask ChatGPT about the research

The hypothesis that non-perturbative gravitational effects lead to explicit breaking of global symmetries is considered in the context of Majoron models. We find that the nonvanishing Majoron mass generated by these effects can overclose the universe unless the massive Majoron is unstable. The cosmological mass density constraints can then be satisfied only if $V_{BL} < 10$ TeV, where $V_{BL}$ is the scale of $B-L$ symmetry breaking.



rate research

Read More

272 - Saurya Das , R.B. Mann 2011
Almost all theories of Quantum Gravity predict modifications of the Heisenberg Uncertainty Principle near the Planck scale to a so-called Generalized Uncertainty Principle (GUP). Recently it was shown that the GUP gives rise to corrections to the Schrodinger and Dirac equations, which in turn affect all non-relativistic and relativistic quantum Hamiltonians. In this paper, we apply it to superconductivity and the quantum Hall effect and compute Planck scale corrections. We also show that Planck scale effects may account for a (small) part of the anomalous magnetic moment of the muon. We obtain (weak) empirical bounds on the undetermined GUP parameter from present-day experiments.
We study corrections to tri-bimaximal (TBM) neutrino mixing from renormalization group (RG) running and from Planck scale effects. We show that while the RG effects are negligible in the standard model (SM), for quasi-degenerate neutrinos and large $tanbeta$ in the minimal supersymmetric standard model (MSSM) all three mixing angles may change significantly. In both these cases, the direction of the modification of $theta_{12}$ is fixed, while that of $theta_{23}$ is determined by the neutrino mass ordering. The Planck scale effects can also change $theta_{12}$ up to a few degrees in either direction for quasi-degenerate neutrinos. These effects may dominate over the RG effects in the SM, and in the MSSM with small $tan beta$. The usual constraints on neutrino masses, Majorana phases or $tan beta$ stemming from RG running arguments can then be relaxed. We quantify the extent of Planck effects on the mixing angles in terms of mismatch phases which break the symmetries leading to TBM. In particular, we show that when the mismatch phases vanish, the mixing angles are not affected in spite of the Planck scale contribution. Similar statements may be made for $mu$-$tau$ symmetric mass matrices.
128 - Tigran Kalaydzhyan 2016
We challenge the analysis and conclusions of the paper Phys. Rev. Lett. 109, 141103 (2012) by V. Gharibyan on the tests of Planck-scale gravity with accelerators. The main objective of the Comment is the observation that the explored domain of quantum gravity parameters is already ruled out experimentally from, e.g., absence of the vacuum Cherenkov radiation.
We present singlet-Majoron couplings to Standard Model particles through two loops at leading order in the seesaw expansion, including couplings to gauge bosons as well as flavor-changing quark interactions. We discuss and compare the relevant phenomenological constraints on Majoron production as well as decaying Majoron dark matter. A comparison with standard seesaw observables in low-scale settings highlights the importance of searches for lepton-flavor-violating two-body decays $ell to ell +$Majoron in both the muon and tau sectors.
We propose a scenario in which the Planck scale is dynamically linked to the electroweak scale induced by top condensation. The standard model field content, without the Higgs, is promoted to a 5D warped background. There is also an additional 5D fermion with the quantum numbers of the right-handed top. Localization of the zero-modes leads, at low energies, to a Nambu-Jona-Lasinio model that also stabilizes the radion field dynamically thus explaining the hierarchy between the Planck scale and v_EW = 174 GeV. The top mass arises dynamically from the electroweak breaking condensate. The other standard model fermion masses arise naturally from higher-dimension operators, and the fermion mass hierarchies and flavor structure can be explained from the localization of the zero-modes in the extra dimension. If any other contributions to the radion potential except those directly related with electroweak symmetry breaking are engineered to be suppressed, the KK scale is predicted to be about two orders of magnitude above the electroweak scale rendering the model easily consistent with electroweak precision data. The model predicts a heavy (composite) Higgs with a mass of about 500 GeV and standard-model-like properties, and a vector-like quark with non-negligible mixing with the top quark and mass in the 1.6 - 2.9 TeV range. Both can be within the reach of the LHC. It also predicts a radion with a mass of a few GeV that is very weakly coupled to standard model matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا