No Arabic abstract
The mass-generation mechanism is the most urgent problem of the modern particle physics. The discovery and study of the Higgs boson with the Large Hadron Collider at CERN are the highest priority steps to solve the problem. In this paper, the Standard Model Higgs mechanism of the elementary particle mass generation is reviewed with pedagogical details. The discussion of the Higgs quadric self-coupling lambda parameter and the bounds to the Higgs boson mass are presented. In particular, the unitarity, triviality, and stability constraints on the Higgs boson mass are discussed. The generation of the finite value for the lambda parameter due to quantum corrections via effective potential is illustrated. Some simple predictions for the top quark and the Higgs boson masses are given when both the top Yukawa coupling and the Higgs self-coupling lambda are equal to 1.
We study the Higgs pair-production in the Standard Model of the strong and electroweak interactions at future $e^{+}e^{-}$ collider energies, with the reaction $e^{+}e^{-}to t bar t HH$. We evaluated the total cross section of $tbar tHH$ and calculate the number total of events considering the complete set of Feynman diagrams at tree-level. The numerical computation is done for the energy which is expected to be available at a possible Next Linear $e^{+}e^{-}$ Collider: with center-of-mass energy $800, 1600$ $GeV$ and luminosity 1000 $fb^{-1}$.
We present the results of searches for the Standard Model Higgs boson decaying predominantly to WW pairs, at a center-of-mass energy of sqrt(s)=1.96 TeV, using up to 8.2 fb^{-1} of data collected with the CDF and D0 detectors at the Fermilab Tevatron collider. The analysis techniques and the various channels considered are discussed. These searches result in exclusions across the Higgs mass range of 156.5<mH<173.7 GeV for CDF and 161<mH<170 GeV for D0.
We consider the Higgs boson decay processes and its production, and provide a parameterisation tailored for testing models of new physics beyond the Standard Model. We also compare our formalism to other existing parameterisations based on scaling factors in front of the couplings and to effective Lagrangian approaches. Different formalisms allow to best address different aspects of the Higgs boson physics. The choice of a particular parameterisation depends on a non-obvious balance of quantity and quality of the available experimental data, envisaged purpose for the parameterisation and degree of model independence, importance of the radiative corrections, scale at which new particles appear explicitly in the physical spectrum. At present only simple parameterisations with a limited number of fit parameters can be performed, but this situation will improve with the forthcoming experimental LHC data. Detailed fits can only be performed by the experimental collaborations at present, as the full information on the different decay modes is not completely available in the public domain. It is therefore important that different approaches are considered and that the most detailed information is made available to allow testing the different aspects of the Higgs boson physics and the possible hints beyond the Standard Model.
We propose a new mechanism for generating small neutrino masses which predicts the relation m_ u ~ v^4/M^3, where v is the electroweak scale, rather than the conventional seesaw formula m_ u ~ v^2/M. Such a mass relation is obtained via effective dimension seven operators LLHH(H*H)/M^3, which arise when an isospin 3/2 Higgs multiplet Phi is introduced along with iso-triplet leptons. The masses of these particles are naturally in the TeV scale. The neutral member of Phi acquires an induced vacuum expectation value and generates neutrino masses, while its triply charged partner provides the smoking gun signal of this scenario. These triply charged bosons can be pair produced at the LHC and the Tevatron, with Phi^{+++} decaying into W^+l^+l^+ or W^+W^+W^+, possibly with displaced vertices. The leptonic decays of Phi^{+++} will help discriminate between normal and inverted hierarchies of neutrino masses. This scenario also allows for raising the standard Higgs boson mass to values in excess of 500 GeV.
In this talk, I present a new mechanism for the generation of neutrino masses via dimension 7 operators: llHH(H*H)/M^3. This leads to new formula for the light neutrino masses, m_ u~v^4/M^3. This is distinct from the usual see-saw formulae: m_ u~v^2/M. The scale of new physics can naturally be at the TeV scale. Microscopic theory that generated d=7 operator has an isospin 3/2 Higgs multiplet Phi, which contains a triply charged Higgs boson with mass around ~TeV or less. These particles can be produced at the LHC (and possibly at the Tevatron) with distinctive multi-W and multi-lepton final states. For some choice of the parameter space, these particles can also be long-lived with the possibility of displaced vertices, or even escaping the detector. Their leptonic decay modes carry information about the nature of the neutrino mass hierarchy.