We analyse the PVLAS results using a chameleon field whose properties depend on the environment. We find that, assuming a runaway bare potential $V(phi)$ and a universal coupling to matter, the chameleon potential is such that the scalar field can act as dark energy. Moreover the chameleon field model is compatible with the CAST results, fifth force experiments and cosmology.
We have calculated the chameleon pressure between two parallel plates in the presence of an intervening medium that affects the mass of the chameleon field. As intuitively expected, the gas in the gap weakens the chameleon interaction mechanism with a screening effect that increases with the plate separation and with the density of the intervening medium. This phenomenon might open up new directions in the search of chameleon particles with future long range Casimir force experiments.
We study different phenomenological signatures associated with new spin-2 particles. These new degrees of freedom, that we call hidden gravitons, arise in different high-energy theories such as extra-dimensional models or extensions of General Relativity. At low energies, hidden gravitons can be generally described by the Fierz-Pauli Lagrangian. Their phenomenology is parameterized by two dimensionful constants: their mass and their coupling strength. In this work, we analyze two different sets of constraints. On the one hand, we study potential deviations from the inverse-square law on solar-system and laboratory scales. To extend the constraints to scales where the laboratory probes are not competitive, we also study consequences on astrophysical objects. We analyze in detail the processes that may take place in stellar interiors and lead to emission of hidden gravitons, acting like an additional source of energy loss.
The status of the solar axion search with the CERN Axion Solar Telescope (CAST) will be presented. Recent results obtained by the use of $^3$He as a buffer gas has allowed us to extend our sensitivity to higher axion masses than our previous measurements with $^4$He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV$ le m_{a} le $ 0.64 eV. From the absence of an excess of x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g$_{agamma} le 2.3times 10^{-10}$ GeV$^{-1}$ at 95% C.L., the exact value depending on the pressure setting. CAST published results represent the best experimental limit on the photon couplings to axions and other similar exotic particles dubbed WISPs (Weakly Interacting Slim Particles) in the considered mass range and for the first time the limit enters the region favored by QCD axion models. Preliminary sensitivities for axion masses up to 1.16 eV will also be shown reaching mean upper limits on the axion-photon coupling of g$_{agamma} le 3.5times 10^{-10}$ GeV$^{-1}$ at 95% C.L. Expected sensibilities for the extension of the CAST program up to 2014 will be presented. Moreover long term options for a new helioscope experiment will be evoked.
Light bosonic fields mediate long range forces between objects. If these fields have self-interactions, i.e., non-quadratic terms in the potential, the experimental constraints on such forces can be drastically altered due to a screening (chameleon) or enhancement effect. We explore how technically natural values for such self-interaction coupling constants modify the existing constraints. We point out that assuming the existence of these natural interactions leads to new constraints, contrary to the usual expectation that screening leads to gaps in coverage. We discuss how screening can turn fundamentally equivalence principle (EP)-preserving forces into EP-violating ones. This means that when natural screening is present, searches for EP violation can be used to constrain EP-preserving forces. We show how this effect enables the recently discovered stellar triple system textit{PSR J0337$+$1715} to place a powerful constraint on EP-preserving fifth forces. Finally, we demonstrate that technically natural cubic self-interactions modify the vacuum structure of the scalar potential, leading to new constraints from spontaneous and induced vacuum decay.
Many non-linear scalar field theories possess a screening mechanism that can suppress any associated fifth force in dense environments. As a result, these theories can evade local experimental tests of new forces. Chameleon-like screening, which occurs because of non-linearities in the scalar potential or the coupling to matter, is well understood around extended objects. However, many experimental tests of these theories involve objects with spatial extent much smaller than the scalar fields Compton wavelength, and which could therefore be considered point-like. In this work, we determine how the fifth forces are screened in the limit that the source objects become extremely compact.
Ph. Brax
,C. van de Bruck
,A.-C. Davis
.
(2007)
.
"Compatibility of the chameleon-field model with fifth-force experiments, cosmology, and PVLAS and CAST results"
.
Carsten van de Bruck
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا