Do you want to publish a course? Click here

Distinguishing Z signatures and the Littlest Higgs model in e+e- Colliders at sqrt{s} e M_{Z}

53   0   0.0 ( 0 )
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

There is a recent proposal identifying the Higgs particle of the Standard Model as a pseudo Nambu-Goldstone boson. This new broken symmetry introduces new particles and new interactions. Among these new interactions a central role to get a new physics is played by two new heavy neutral gauge bosons. We have studied the two new neutral currents in the Littlest Higgs model and compared with other extended models. For high energy e+e- colliders we present a clear signature for these two new neutral gauge bosons that can indicate the theoretical origin of these particles. Previous analysis by other authors were done at collider energies equal to the new gauge boson mass M_{A_H}. In this paper we show that asymmetries in fermion antifermion production can display model differences in the case M_{A_H} > sqrt{s}. For M_{A_H} < sqrt{s} we show that the hard photon energy distribution in e+e- --> gamma + f + anti-f can present a model dependence. For higher energies, the hard photon energy distribution can be a clear signature for both new neutral gauge bosons. New bounds for the new neutral gauge boson masses are also presented.



rate research

Read More

The Inert Doublet Model (IDM) is one of the simplest extensions of the Standard Model (SM), providing a dark matter candidate. It is a two Higgs doublet model with a discrete $Z_2$ symmetry, that prevents the scalars of the second doublet (inert scalars) from coupling to the SM fermions and makes the lightest of them stable. We study a large group of IDM scenarios, which are consistent with current constraints on direct detection, including the most recent bounds from the XENON1T experiment and relic density of dark matter, as well as with all collider and low-energy limits. We propose a set of benchmark points with different kinematic features, that promise detectable signals at future $e^+e^-$ colliders. Two inert scalar pair-production processes are considered, $e^+e^- to H^+H^-$ and $e^+e^- to AH$, followed by decays of $H^pm$ and $A$ into final states which include the lightest and stable neutral scalar dark matter candidate $H$. Significance of the expected observations is studied for different benchmark models and different running scenarios, for centre-of-mass energies up to 3 TeV. Numerical results are presented for the signal signatures with two muons or an electron and a muon in the final state. For high mass scenarios, when the significance is too low for the leptonic signatures, the semi-leptonic signature can be used as the discovery channel.
The Inert Doublet Model is one of the simplest extensions of the Standard Model, providing a dark matter candidate. It is a two Higgs doublet model with a discrete $Z_2$ symmetry, that prevents the scalars of the second doublet (inert scalars) from coupling to the Standard Model fermions and makes the lightest of them stable. We study a large number of Inert Doublet Model scenarios, which are consistent with current constraints on direct detection, including the most recent bounds from the XENON1T experiment and relic density of dark matter, as well as collider and low-energy limits. We use a set of benchmark points with different kinematic features, that promise detectable signals at future $e^+e^-$ colliders. Two inert scalar pair-production processes are considered, $e^+e^- to A~H $ and $e^+e^- to H^+H^-$, followed by decays of $H^pm$ and $A$ into the final states which include the lightest and stable neutral scalar dark matter candidate $H$. Significance of the expected observations is studied for different benchmark models and different running scenarios, for centre-of-mass energies up to 3 TeV. Numerical results are presented for the signal signatures with two muons or an electron and a muon in the final state, while the qualitative conclusions can also be drawn for the semi-leptonic signatures.
We study the double Higgs boson production processes $e^+e^- to hh fbar{f}$ ($f eq t$) with $h$ being the 125 GeV Higgs boson in the two-Higgs-doublet model with a softly-broken $Z_2$ symmetry. The cross section can be significantly enhanced, typically a few hundreds percent, as compared to the standard model prediction due to resonant effects of heavy neutral Higgs bosons, which becomes important in the case without the alignment limit. We find a strong correlation between the enhancement factor of the cross section and the scaling factor of the $hfbar{f}$ couplings under constraints from perturbative unitarity, vacuum stability and current experimental data at the LHC as well as the electroweak precision data.
117 - Yutaka Hosotani 2019
In gauge-Higgs unification the 4D Higgs boson appears as a part of the fifth dimensional component of gauge potentials, namely as a fluctuation mode of the Aharonov-Bohm phase in the extra dimension. The $SO(5) times U(1) times SU(3)$ gauge-Higgs unification gives nearly the same phenomenology as the standard model (SM) at low energies. It predicts KK excited states of photon, $Z $ boson, and $Z_R$ boson ($Z$ bosons) around 7 - 8 TeV. Quarks and leptons couple to these $Z$ bosons with large parity violation, which leads to distinct interference effects in $e^+ e^- rightarrow mu^+ mu^-, q , bar q$ processes. At 250 GeV ILC with polarized electron beams, deviation from SM can be seen at the 3 - 5 sigma level even with 250 fb$^{-1}$ data, namely in the early stage of ILC. Signals become stronger at higher energies. Precision measurements of interference effects at electron-positron colliders at energies above 250 GeV become very important to explore physics beyond the standard model.
For the search for additional Higgs bosons in the Minimal Supersymmetric Standard Model (MSSM) as well as for future precision analyses in the Higgs sector a precise knowledge of their production properties is mandatory. We review the evaluation of the cross sections for the neutral Higgs boson production in association with a photon at future $e^+e^-$ colliders in the MSSM with complex parameters (cMSSM). The evaluation is based on a full one-loop calculation of the production mechanism $e^+e^- to h_i gamma$ ($i = 1,2,3$). The dependence of the lightest Higgs-boson production cross sections on the relevant cMSSM parameters is analyzed numerically. We find relatively small numerical depedences of the production cross sections on the underlying parameters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا