Do you want to publish a course? Click here

Unitarisation of the hard pomeron and black-disk limit at the LHC

229   0   0.0 ( 0 )
 Added by Jean-Rene Cudell
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

Recent models of soft diffraction include a hard pomeron pole besides the usual soft term. Such models violate the black-disk limit around Tevatron energies, so that they need to be supplemented by a unitarisation scheme. Several such schemes are considered in this letter, where we show that they lead to a large uncertainty at the LHC. We also examine the impact of unitarisation on various small-t observables, the slope in t of the elastic cross section, or the ratio of the real to imaginary parts of the scattering amplitude, leading to the conclusion that the existence of a hard pomeron in soft scattering may be confirmed by LHC data.



rate research

Read More

102 - R. Fiore 2015
A Regge pole model for Pomeron-Pomeron total cross section in the resonance region $sqrt{M^2}le$ 5 GeV is presented. The cross section is saturated by direct-channel contributions from the Pomeron as well as from two different $f$ trajectories, accompanied by the isolated f$_0(500)$ resonance which dominates the $sqrt{M^{2}}lesssim 1$ GeV region. A slowly varying background is taken into account. The calculated Pomeron-Pomeron total cross section cannot be measured directly, but is an essential part of central diffractive processes. In preparation of future calculations of central resonance production at the hadron level, and corresponding measurements at the LHC, we normalize the Pomeron-Pomeron cross section at large masses $sigma_{t}^{PP} (sqrt{M^2}rightarrow infty) approx$ 1 mb as suggested by QCD-motivated estimates.
A model for Pomeron-Pomeron total cross section in the resonance region $sqrt{M^{2}} le$ 5 GeV is presented. This model is based on Regge poles from the Pomeron and two different $f$ trajectories, and includes the isolated f$_{0}(500)$ resonance in the region $sqrt{M^{2}}lesssim 1$ GeV. A slowly varying background is included. The presented Pomeron-Pomeron cross section is not directly measurable, but is an essential ingredient for calculating exclusive resonance production at the LHC.
We propose a new approach to the LHC dark matter search analysis within the effective field theory (EFT) framework by utilising the K-matrix unitarisation formalism. This approach provides a reasonable estimate of the dark matter production cross section at high energies, and hence allows reliable bounds to be placed on the cut-off scale of relevant operators without running into the problem of perturbative unitarity violation. We exemplify this procedure for the effective operator D5 in monojet dark matter searches in the collinear approximation. We compare our bounds to those obtained using the truncation method and identify a parameter region where the unitarisation prescription leads to more stringent bounds.
The hard pomeron component needed to reproduce small-x data seems to be present in elastic scattering at moderate energy. If this is the case, it is likely that the total cross section at the LHC will be appreciably larger than previously expected.
We ask the question whether the quark and gluon distributions in the Pomeron obtained from QCD fits to hard diffraction processes at HERA can be dynamically generated from a state made of ``valence-like gluons and sea quarks as input. By a method combining backward Q^2-evolution for data exploration and forward Q^2-evolution for a best fit determination, we find that the diffractive structure functions published by the H1 collaboration at HERA can be described by a simple ``valence-like input at an initial scale of order mu^2 ~ 2.3-2.7 GeV^2. The parton number sum rules at the initial scale mu^2 for the H1 fit gives 2.1pm .1pm .1 and .13pm .01 pm .02 for gluon and sea quarks respectively, corresponding to an initial Pomeron state made of (almost) only two gluons. It has flat gluon density leading to a plausible interpretation in terms of a gluonium state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا