Do you want to publish a course? Click here

Tevatron-for-LHC Report of the QCD Working Group

177   0   0.0 ( 0 )
 Added by Stephen Mrenna
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

The experiments at Run 2 of the Tevatron have each accumulated over 1 inverse femtobarn of high-transverse momentum data. Such a dataset allows for the first precision (i.e. comparisons between theory and experiment at the few percent level) tests of QCD at a hadron collider. While the Large Hadron Collider has been designed as a discovery machine, basic QCD analyses will still need to be performed to understand the working environment. The Tevatron-for-LHC workshop was conceived as a communication link to pass on the expertise of the Tevatron and to test new analysis ideas coming from the LHC community. The TeV4LHC QCD Working Group focussed on important aspects of QCD at hadron colliders: jet definitions, extraction and use of Parton Distribution Functions, the underlying event, Monte Carlo tunes, and diffractive physics. This report summarizes some of the results achieved during this workshop.



rate research

Read More

146 - R.K. Ellis 2000
We report on the activities of the ``QCD Tools for heavy flavors and new physics searches working group of the Run II Workshop on QCD and Weak Bosons. The contributions cover the topics of improved parton showering and comparisons of Monte Carlo programs and resummation calculations, recent developments in Pythia, the methodology of measuring backgrounds to new physics searches, variable flavor number schemes for heavy quark electro-production, the underlying event in hard scattering processes, and the Monte Carlo MCFM for NLO processes.
161 - S. Alekhin , C. Balazs , R. Ball 2002
This Report documents the results obtained by the Working Group on Quantum ChromoDynamics and the Standard Model for the Workshop ``Physics at TeV Colliders, Les Houches, France, 21 May - 1 June 2001. The account of uncertainties in Parton Distribution Functions is reviewed. Progresses in the description of multiparton final states at Next-to-Leading Order and the extension of calculations for precision QCD observables beyond this order are summarized. Various issues concerning the relevance of resummation for observables at TeV colliders is examined. Improvements to algorithms of jet reconstruction are discussed and predictions for diphoton and photon pi-zero production at the LHC are made for kinematic variables of interest regarding searches for a Higgs boson decaying into two photons. Finally, several improvements implemented in Monte-Carlo event generators are documented.
The search for Higgs bosons in both the standard model and its extensions is well under way at the Tevatron. As the integrated luminosity collected increases into the multiple inverse femptobarn range, these searches are becoming very interesting indeed. Meanwhile, the construction of the Large Hadron Collider (LHC) and its associated experiments at CERN are nearing completion. In this TeV4LHC workshop, it was realized that any experience at the Tevatron with respect to backgrounds, experimental techniques and theoretical calculations that can be verified at the Tevatron which have relevance for future measurements at the LHC were important. Studies and contributions to these efforts were made in three broad categories: theoretical calculations of Higgs production and decay mechanisms; theoretical calculations and discussions pertaining to non-standard model Higgs bosons; and experimental reviews, analyses and developments at both the Tevatron and the upcoming LHC experiments. All of these contributions represent real progress towards the elucidation of the mechanism of electroweak symmetry breaking.
This is the summary report of the energy frontier QCD working group prepared for Snowmass 2013. We review the status of tools, both theoretical and experimental, for understanding the strong interactions at colliders. We attempt to prioritize important directions that future developments should take. Most of the efforts of the QCD working group concentrate on proton-proton colliders, at 14 TeV as planned for the next run of the LHC, and for 33 and 100 TeV, possible energies of the colliders that will be necessary to carry on the physics program started at 14 TeV. We also examine QCD predictions and measurements at lepton-lepton and lepton-hadron colliders, and in particular their ability to improve our knowledge of strong coupling constant and parton distribution functions.
The report summarizes the results of the activities of the Working Group on Precision Calculations for the Z Resonance at CERN during 1994.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا