Do you want to publish a course? Click here

Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology

102   0   0.0 ( 0 )
 Added by Gabriela Barenboim
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard lambda-CDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction of the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP--allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to lambda-CDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions.

rate research

Read More

111 - L. Bergstrom , J. Edsjo , P. Ullio 1999
The flux of cosmic ray antiprotons from neutralino annihilations in the galactic halo is computed for a large sample of models in the MSSM (the Minimal Supersymmetric extension of the Standard Model). We also revisit the problem of estimating the background of low-energy cosmic ray induced secondary antiprotons, taking into account their subsequent interactions (and energy loss) and the presence of nuclei in the interstellar matter. We consider a two-zone diffusion model, with and without a galactic wind. We find that, given the uncertainties in the background predictions, there is no need for a primary (exotic) component to explain present data. However, allowing for a signal by playing with the uncertainties in the background estimate, we discuss the characteristic features of the supersymmetric models which give a satisfactory description of the data. We point out that in some cases the optimal kinetic energy to search for a signal from supersymmetric dark matter is above several GeV, rather than the traditional sub-GeV region. The large astrophysical uncertainties involved do not, one the other hand, allow the exclusion of any of the MSSM models we consider, on the basis of data. We present besides numerical results also convenient parameterizations of the antiproton yields of all `basic two-body final states. We also give examples of the yield and differential energy spectrum for a set of supersymmetric models with high rates. We also remark that it is difficult to put a limit on the antiproton lifetime from present measurements, since the injection of antiprotons from neutralino annihilation can compensate the loss from decay.
Sterile neutrinos at the eV scale have long been studied in the context of anomalies in short baseline neutrino experiments. Their cosmology can be made compatible with our understanding of the early Universe provided the sterile neutrino sector enjoys a nontrivial dynamics with exotic interactions, possibly providing a link to the Dark Matter (DM) puzzle. Interactions between DM and neutrinos have also been proposed to address the long-standing missing satellites problem in the field of large scale structure formation. Motivated by these considerations, in this paper we discuss realistic scenarios with light steriles coupled to DM. We point out that within this framework active neutrinos acquire an effective coupling to DM that manifests itself as a new matter potential in the propagation within a medium of asymmetric DM. Assuming that at least a small fraction of asymmetric DM has been captured by the Sun, we show that a sizable region of the parameter space of these scenarios can be probed by solar neutrino experiments, especially in the regime of small couplings and light mediators where all other probes become inefficient. In the latter regime these scenarios behave as familiar $3+1$ models in all channels except for solar data, where a Solar Dark MSW effect takes place. Solar Dark MSW is characterized by modifications of the most energetic $^8$B and CNO neutrinos, whereas the other fluxes remain largely unaffected.
79 - Benjamin Fuks 2019
Constraining dark matter models necessitates accurate predictions for large set of observables originating from collider physics, cosmology and astrophysics. We consider two classes of top-philic dark matter models where the dark sector is coupled to the Standard Model via the top quark and study the complementarity of dark matter relic density, direct and indirect detection and collider searches in exploring the model parameter space. We moreover investigate how higher-order corrections affect the results.
We propose the lightest supersymmetric particle (LSP) as a well-suited candidate for superheavy dark matter (SHDM). Various production mechanisms at the end of inflation can produce SHDM with the correct abundance, $Omega_{LSP} h^2 sim 0.1$, if its mass is sufficiently high. In particular, gravitational production requires that the mass $m_{LSP}$ of the LSP is above $3times 10^{11} GeV$. Weak interactions remain perturbative despite the large mass hierarchy, $m_{LSP}gg m_Z$, because of the special decoupling properties of supersymmetry. As a result the model is predictive and we discuss the relevant cosmological processes for the case of a superheavy neutralino within this scheme.
We show that supersymmetric Dark Force models with gravity mediation are viable. To this end, we analyse a simple string-inspired supersymmetric hidden sector model that interacts with the visible sector via kinetic mixing of a light Abelian gauge boson with the hypercharge. We include all induced interactions with the visible sector such as neutralino mass mixing and the Higgs portal term. We perform a detailed parameter space scan comparing the produced dark matter relic abundance and direct detection cross sections to current experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا