Do you want to publish a course? Click here

Heavy Quark Pair Production near Threshold with Potential Non-Relativistic QCD

163   0   0.0 ( 0 )
 Added by Adrian Signer
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

We study the effect of the resummation of logarithms for tbar{t} production near threshold and inclusive electromagnetic decays of heavy quarkonium. This analysis is complete at next-to-next-to-leading order and includes the full resummation of logarithms at next-to-leading-logarithmic accuracy and some partial contributions at next-to-next-to-leading logarithmic accuracy. Compared with fixed-order computations at next-to-next-to-leading order the scale dependence and convergence of the perturbative series is greatly improved for both the position of the peak and the normalization of the total cross section. Nevertheless, we identify a possible source of large scale dependence in the result. At present we estimate the remaining theoretical uncertainty of the normalization of the total cross section to be of the order of 10% and for the position of the peak of the order of 100 MeV.



rate research

Read More

211 - M. Beneke 2008
We compute the third-order correction to the heavy-quark current correlation function due to the emission and absorption of an ultrasoft gluon. Our result supplies a missing contribution to top-quark pair production near threshold and the determination of the bottom quark mass from QCD sum rules.
328 - M. Beneke 2008
We present new results on the NNNLO top-antitop production cross section near threshold from potential and ultrasoft gluon corrections. The new non-logarithmic third-order terms are in the 10% range and lead to a significant reduction in the theoretical error.
Heavy fermion pair production in $e^+e^-$ annihilation is a fundamental process in hadron physics and is of considerable interest for various phenomena. In this paper, we will apply the Principle of Maximum Conformality (PMC) to provide a comprehensive analysis of these processes. The PMC provides a systematic, unambiguous method for determining the renormalization scales of the QCD coupling constant for single-scale and multiple-scale applications. The resulting predictions eliminate any renormalization scheme-and-scale ambiguities, eliminate the factorial renormalon divergences, and are consistent with the requirements of the renormalization group. It is remarkable that two distinctly different scales are determined by using the PMC for heavy fermion pair production near the threshold region. One scale is the order of the fermion mass $m_f$, which enters the hard virtual corrections, and the other scale is of order $ v,m_f$, where $v$ is the quark velocity, which enters the Coulomb rescattering amplitude. The PMC scales yield the correct physical behavior and reflect the virtuality of the propagating gluons (photons) for the QCD (QED) processes. Moreover, we demonstrate the consistency of PMC scale setting from QCD to QED. Perfect agreement between the Abelian unambiguous Gell-Mann-Low and the PMC scale-setting methods in the limit of zero number of colors is demonstrated.
229 - M. Beneke 2011
We compute the total top-quark pair production cross section at the Tevatron and LHC based on approximate NNLO results, and on the summation of threshold logarithms and Coulomb enhancements to all orders with next-to-next-to-leading logarithmic (NNLL) accuracy, including bound-state effects. We find sigma_{tbar t} = 7.22^{+0.31+0.71}_{-0.47-0.55} pb at Tevatron and sigma_{tbar t} = 162.6^{+7.4+15.4}_{-7.6-14.7} pb at LHC with 7 TeV c.o.m. energy, for m_t=173.3 GeV. The implementation of joint soft and Coulomb resummation, its ambiguities, and the present theoretical uncertainty are discussed in detail. We further obtain new approximate results at N3LO.
We investigate top quark pair production near the threshold where the pair invariant mass $M_{tbar{t}}$ approaches $2m_t$, which provides sensitive observables to extract the top quark mass $m_t$. Using the effective field theory methods, we derive a factorization and resummation formula for kinematic distributions in the threshold limit up to the next-to-leading power, which resums higher order Coulomb corrections to all orders in the strong coupling constant. Our formula is similar to those in the literature but differs in several important aspects. We apply our formula to the $M_{tbar{t}}$ distribution, as well as to the double differential cross section with respect to $M_{tbar{t}}$ and the rapidity of the $tbar{t}$ pair. We find that the resummation effects significantly increase the cross sections near the threshold, and lead to predictions better compatible with experimental data than the fixed-order ones. We demonstrate that incorporating resummation effects in the top quark mass determination can shift the extracted value of $m_t$ by as large as 1.4 GeV. The shift is much larger than the estimated uncertainties in previous experimental studies, and leads to a value of the top quark pole mass more consistent with the current world average.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا