Do you want to publish a course? Click here

Little Higgs model effects in $gamma gamma to gamma gamma$

102   0   0.0 ( 0 )
 Added by Naveen Gaur
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

Though the predictions of the Standard Model (SM) are in excellent agreement with experiments there are still several theoretical problems associated with the Higgs sector of the SM, where it is widely believed that some ``{it new physics} will take over at the TeV scale. One beyond the SM theory which resolves these problems is the Little Higgs (LH) model. In this work we have investigated the effects of the LH model on $gggg$ scattering cite{Choudhury:2006xa}.



rate research

Read More

Though the predictions of the Standard Model (SM) are in excellent agreement with experiments there are still several theoretical problems, such as fine-tuning and the hierarchy problem. These problems are associated with the Higgs sector of the SM, where it is widely believed that some {it ``new physics} will take over at the TeV scale. One beyond the SM theory which resolves these problems is the Little Higgs (LH) model. In this work we shall investigate the effects of the LH model on $gggg$ scattering; where the process $gggg$ at high energies occurs in the SM through diagrams involving $W$, charged quark and lepton loops (and is, therefore, particularly sensitive to any new physics
Motivated by the recent result reported from LHC on the di-photon search for a Standard Model (SM) Higgs-like boson. We discuss the implications of this possible signal in the framework of the Inert Higgs Doublet Model (IHDM), taking into account previous limits from Higgs searches at LEP, the Tevatron and the LHC as well as constraints from unitarity, vacuum stability and electroweak precision tests. We show that the charged Higgs contributions can interfere constructively or destructively with the W gauge bosons loops leading to enhancement or suppression of the di-photon rate with respect to SM rate. We show also that the invisible decay of the Higgs, if open, could affect the total width of the SM Higgs boson and therefore suppress the di-photon rate.
203 - T. Aliev 2007
We study the process e+e- -->nu nubar gamma to search for its sensitivity to the extra gauge bosons Z_2, Z_3 and W_2 which are suggested by the little Higgs models. We find that the ILC with sqrt(s)=0.5 TeV and CLIC with sqrt(s)=3 TeV cover different regions of the LHM parameters. We show that this channel can provide accurate determination of the parameters, complementary to measurements of the extra gauge bosons at the coming LHC experiments.
We study heavy physics effects on the Higgs production in $gamma gamma $ fusion using the effective Lagrangian approach. We find that the effects coming from new physics may enhance the standard model predictions for the number of events expected in the final states $bar bb$, $WW$, and $ZZ$ up to one order of magnitude, whereas the corresponding number of events for the final state $bar tt$ may be enhanced up to two orders of magnitude.
In the frameworks of the littlest Higgs($LH$) model and its extension with T-parity($LHT$), we studied the associated $tbar th^0$ production process $e^+ e^- to gammagamma to t bar t h^0$ at the future $e^+e^-$ linear colliders up to QCD next-to-leading order. We present the regions of $sqrt{s}-f$ parameter space in which the $LH$ and $LHT$ effects can and cannot be discovered with the criteria assumed in this paper. The production rates of process $gammagamma to t bar t h^0$ in different photon polarization collision modes are also discussed. We conclude that one could observe the effects contributed by the $LH$ or $LHT$ model on the cross section for the process $e^+ e^- to gammagamma to t bar t h^0$ in a reasonable parameter space, or might put more stringent constraints on the $LH$/$LHT$ parameters in the future experiments at linear colliders.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا