New CP-violation and preferred-frame tests with polarized electrons


Abstract in English

We used a torsion pendulum containing $sim 9 times 10^{22}$ polarized electrons to search for CP-violating interactions between the pendulums electrons and unpolarized matter in the laboratorys surroundings or the sun, and to test for preferred-frame effects that would precess the electrons about a direction fixed in inertial space. We find $|g_{rm P}^e g_{rm S}^N|/(hbar c)< 1.7 times 10^{-36}$ and $|g_{rm A}^e g_{rm V}^N|/(hbar c) < 4.8 times 10^{-56}$ for $lambda > 1$AU. Our preferred-frame constraints, interpreted in the Kostelecky framework, set an upper limit on the parameter $|bm{tilde {b}}^e| leq 5.0 times 10^{-21}$ eV that should be compared to the benchmark value $m_e^2/M_{rm Planck}= 2 times 10^{-17}$ eV.

Download