Do you want to publish a course? Click here

We need lab experiments to look for axion-like particles

72   0   0.0 ( 0 )
 Added by Joerg Jaeckel
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

The PVLAS signal has renewed the interest in light bosons coupled to the electromagnetic field. However, astrophysical bounds coming from the lifetime of the sun and the CAST experiment are seemingly in conflict with this result. We discuss effective models that allow to suppress production of axion-like particles in the sun and thereby relax the bounds by some orders of magnitude. This stresses the importance of laboratory searches.



rate research

Read More

Axion-like particles (ALPs) provide a promising direction in the search for new physics, while a wide range of models incorporate ALPs. We point out that future neutrino experiments, such as DUNE, possess competitive sensitivity to ALP signals. The high-intensity proton beam impinging on a target can not only produce copious amounts of neutrinos, but also cascade photons that are created from charged particle showers stopping in the target. Therefore, ALPs interacting with photons can be produced (often energetically) with high intensity via the Primakoff effect and then leave their signatures at the near detector through the inverse Primakoff scattering or decays to a photon pair. Moreover, the high-capability near detectors allow for discrimination between ALP signals and potential backgrounds, improving the signal sensitivity further. We demonstrate that a DUNE-like detector can explore a wide range of parameter space in ALP-photon coupling $g_{agamma}$ vs ALP mass $m_a$, including some regions unconstrained by existing bounds; the cosmological triangle will be fully explored and the sensitivity limits would reach up to $m_asim3-4$ GeV and down to $g_{agamma}sim 10^{-8} {rm GeV}^{-1}$.
203 - Daniel Aloni , Yotam Soreq , 2018
We present a novel data-driven method for determining the hadronic interaction strengths of axion-like particles (ALPs) with QCD-scale masses. Using our method, it is possible to calculate the hadronic production and decay rates of ALPs, along with many of the largest ALP decay rate to exclusive final states. To illustrate the impact on QCD-scale ALP phenomenology, we consider the scenario where the ALP-gluon coupling is dominant over the ALP coupling to photons, electroweak bosons, and all fermions for $m_{pi} lesssim m_a lesssim 3$ GeV. We emphasize, however, that our method can easily be generalized to any set of ALP couplings to SM particles. Finally, using the approach developed here, we provide calculations for the branching fractions of $eta_c to VV$ decays, i.e. $eta_c$ decays into two vector mesons, which are consistent with the known experimental values.
We explore the sensitivity of photon-beam experiments to axion-like particles (ALPs) with QCD-scale masses whose dominant coupling to the Standard Model is either to photons or gluons. We introduce a novel data-driven method that eliminates the need for knowledge of nuclear form factors or the photon-beam flux when considering coherent Primakoff production off a nuclear target, and show that data collected by the PrimEx experiment could substantially improve the sensitivity to ALPs with $0.03 lesssim m_a lesssim 0.3$ GeV. Furthermore, we explore the potential sensitivity of running the GlueX experiment with a nuclear target and its planned PrimEx-like calorimeter. For the case where the dominant coupling is to gluons, we study photoproduction for the first time, and predict the future sensitivity of the GlueX experiment using its nominal proton target. Finally, we set world-leading limits for both the ALP-gluon coupling and the ALP-photon coupling based on public mass plots.
191 - A. Ringwald 2014
The physics case for axions and axion-like particles is reviewed and an overview of ongoing and near-future laboratory searches is presented.
It was recently pointed out that very energetic subclasses of supernovae (SNe), like hypernovae and superluminous SNe, might host ultra-strong magnetic fields in their core. Such fields may catalyze the production of feebly interacting particles, changing the predicted emission rates. Here we consider the case of axion-like particles (ALPs) and show that the predicted large scale magnetic fields in the core contribute significantly to the ALP production, via a coherent conversion of thermal photons. Using recent state-of-the-art SN simulations including magnetohydrodynamics, we find that if ALPs have masses $m_a sim {mathcal O}(10), rm MeV$, their emissivity via magnetic
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا