Do you want to publish a course? Click here

Gauge-Higgs Unification and Quark-Lepton Phenomenology in the Warped Spacetime

247   0   0.0 ( 0 )
 Added by Shimasaki Shinji
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

In the dynamical gauge-Higgs unification of electroweak interactions in the Randall-Sundrum warped spacetime the Higgs boson mass is predicted in the range 120 GeV -- 290 GeV, provided that the spacetime structure is determined at the Planck scale. Couplings of quarks and leptons to gauge bosons and their Kaluza-Klein (KK) excited states are determined by the masses of quarks and leptons. All quarks and leptons other than top quarks have very small couplings to the KK excited states of gauge bosons. The universality of weak interactions is slightly broken by magnitudes of $10^{-8}$, $10^{-6}$ and $10^{-2}$ for $mu$-$e$, $tau$-$e$ and $t$-$e$, respectively. Yukawa couplings become substantially smaller than those in the standard model, by a factor $|cos onehalf theta_W|$ where $theta_W$ is the non-Abelian Aharonov-Bohm phase (the Wilson line phase) associated with dynamical electroweak symmetry breaking.



rate research

Read More

We compute the couplings of the zero modes and first excited states of gluons, $W$s, $Z$ gauge bosons, as well as the Higgs, to the zero modes and first excited states of the third generation quarks, in an RS Gauge-Higgs unification scenario based on a bulk $SO(5)times U(1)_X$ gauge symmetry, with gauge and fermion fields propagating in the bulk. Using the parameter space consistent with electroweak precision tests and radiative electroweak symmetry breaking, we study numerically the dependence of these couplings on the parameters of our model. Furthermore, after emphasizing the presence of light excited states of the top quark, which couple strongly to the Kaluza Klein gauge bosons, the associated collider phenomenology is analyzed. In particular, we concentrate on the possible detection of the first excited state of the top, $t^1$, which tends to have a higher mass than the ones accessible via regular QCD production processes. We stress that the detection of these particles is still possible due to an increase in the pair production of $t^1$ induced by the first excited state of the gluon, $G^1$.
We perform a detailed investigation of a Grand Unified Theory (GUT)-inspired theory of gauge-Higgs unification. Scanning the models parameter space with adapted numerical techniques, we contrast the scenarios low energy limit with existing SM and collider search constraints. We discuss potential modifications of di-Higgs phenomenology at hadron colliders as sensitive probes of the gauge-like character of the Higgs self-interactions and find that for phenomenologically viable parameter choices modifications of the order of 20% compared to the SM cross section can be expected. While these modifications are challenging to observe at the LHC, a future 100 TeV hadron collider might be able to constrain the scenario through more precise di-Higgs measurements. We point out alternative signatures that can be employed to constrain this model in the near future.
268 - Yutaka Hosotani 2012
When the extra dimensional space is not simply-connected, dynamics of the AB phase in the extra dimension can induce dynamical gauge symmetry breaking by the Hosotani mechanism. This opens up a new way of achieving unification of gauge forces. It leads to the gauge-Higgs unification. The Hosotani mechanism can be established nonperturbatively by lattice simulations, in which measurements of the Polyakov line give a clue.
Gauge-Higgs grand unification is formulated. By extending $SO(5) times U(1)_X$ gauge-Higgs electroweak unification, strong interactions are incorporated in $SO(11)$ gauge-Higgs unification in the Randall-Sundrum warped space. Quarks and leptons are contained in spinor and vector multiplets of $SO(11)$. Although the KK scale can be as low as $10 $ TeV, proton decay is forbidden by a conserved fermion number in the absence of Majorana masses of neutrinos.
Gauge-Higgs unification is the fascinating scenario solving the hierarchy problem without supersymmetry. In this scenario, the Standard Model (SM) Higgs doublet is identified with extra component of the gauge field in higher dimensions and its mass becomes finite and stable under quantum corrections due to the higher dimensional gauge symmetry. On the other hand, Yukawa coupling is provided by the gauge coupling, which seems to mean that the flavor mixing and CP violation do not arise at it stands. In this talk, we discuss that the flavor mixing is originated from simultaneously non-diagonalizable bulk and brane mass matrices. Then, this mechanism is applied to various flavor changing neutral current (FCNC) processes via Kaluza-Klein (KK) gauge boson exchange at tree level and constraints for compactification scale are obtained.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا