Do you want to publish a course? Click here

P-Wave Charmed-Strange Mesons

153   0   0.0 ( 0 )
 Added by Akira Suzuki
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

We examine charmed-strange mesons within the framework of the constituent quark model, focusing on the states with L=1. We are particularly interested in the mixing of two spin-states that are involved in $D_{s1}(2536)$ and the recently discovered $D_{sJ}(2460)$. We assume that these two mesons form a pair of states with J=1. These spin-states are mixed by a type of the spin-orbit interaction that violates the total-spin conservation. Without assuming explicit forms for the interactions as functions of the interquark distance, we relate the matrix elements of all relevant spin-dependent interactions to the mixing angle and the observed masses of the L=1 quartet. We find that the spin-spin interaction, among various types of the spin-dependent interactions, plays a particularly interesting role in determining the spin structure of $D_{s1}(2536)$ and $D_{sJ}(2460)$.



rate research

Read More

We give a systematic study of ${bf B}_cto {bf B}_n V$ decays, where ${bf B}_c$ and $ {bf B}_n$ correspond to the anti-triplet charmed and octet baryons, respectively, while $V$ stand for the vector mesons. We calculate the color-symmetric contributions to the decays from the effective Hamiltonian with the factorization approach and extract the anti-symmetric ones based on the experimental measurements and $SU(3)_F$ flavor symmetry. We find that most of the existing experimental data for ${bf B}_cto {bf B}_n V$ are consistent with our fitting results. We present all the branching ratios of the Cabbibo allowed, singly Cabbibo suppressed and doubly Cabbibo suppressed decays of ${bf B}_cto {bf B}_n V$. The decay parameters for the daughter baryons and mesons in ${bf B}_cto {bf B}_n V$ are also evaluated. In particular, we point out that the Cabbibo allowed decays of $Lambda_c^+ to Lambda^0 rho^+$ and $ Xi_c^0 to Xi^- rho^+$ as well as the singly Cabbibo suppressed ones of $Lambda_c^+ to Lambda^0 K^{*+}$, $Xi_c^+ to Sigma^+ phi$ and $Xi_c^0to Xi^- K^{*+}$ have large branching ratios and decay parameters with small uncertainties, which can be tested by the experimental searches at the charm facilities.
We use QCD sum rules to study mass spectra of $P$-wave charmed baryons of the $SU(3)$ flavor $mathbf{6}_F$. We also use light-cone sum rules to study their $S$- and $D$-wave decays into ground-state charmed baryons together with light pseudoscalar and vector mesons. We work within the framework of heavy quark effective theory, and we also consider the mixing effect. Our results can explain many excited charmed baryons as a whole, including the $Sigma_c(2800)^0$, $Xi_c(2923)^0$, $Xi_c(2939)^0$, $Xi_{c}(2965)^{0}$, $Omega_c(3000)^0$, $Omega_c(3050)^0$, $Omega_c(3066)^0$, $Omega_c(3090)^0$, and $Omega_c(3119)^0$. Their masses, mass splittings within the same multiplets, and decay properties are extracted for future experimental searches.
The charmed-strange meson masses are calculated on a quenched lattice QCD. The charm and strange quark propagators are calculated on the same lattice with the overlap fermion. $16^3times 72$ lattice with Wilson gauge action at $beta=0.6345$ are used. The charm and strange quark masses are determined by fitting the $J/psi$ and $phi$ masses respectively. The charmed strange meson spectrum for the scalar, axial, pseudoscalar and vector channels are calculated. They agree with experiments. In particular, we find the scalar meson mass to be 2248(78)MeV which is in agreement with that of D_{s0}^*(2317).
A symmetry-preserving treatment of a vector-vector contact interaction is used to study charmed heavy-light mesons. The contact interaction is a representation of nonperturbative kernels used in Dyson-Schwinger and Bethe-Salpeter equations of QCD. The Dyson-Schwinger equation is solved for the $u,,d,,s$ and $c$ quark propagators and the bound-state Bethe-Salpeter amplitudes respecting spacetime-translation invariance and the Ward-Green-Takahashi identities associated with global symmetries of QCD are obtained to calculate masses and electroweak decay constants of the pseudoscalar $pi,,K$, $D$ and $D_s$ and vector $rho$, $K^*$, $D^*$, and $D^*_s$ mesons. The predictions of the model are in good agreement with available experimental and lattice QCD data.
We present ground state spectra of mesons containing a charm and a bottom quark. For the charm quark we use overlap valence quarks while a non-relativistic formulation is utilized for the bottom quark on a background of 2+1+1 flavors HISQ gauge configurations generated by the MILC collaboration. The hyperfine splitting between $1S$ states of $B_c$ mesons is found to be $56^{+4}_{-3}$ MeV. We also study the baryons containing only charm and bottom quarks and predict their ground state masses. Results are obtained at three lattice spacings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا