A radius of a dense star on the color superconducting phase is investigated in an extended NJL type model with two flavors of quarks. Since the model is non-renormalizable, the results depend on the regularization procedure. Here we apply the dimensional regularization and evaluate the radius of a dense star. Evaluating the TOV equation, we show the relationship between mass and radius of the dense star in the dimensional regularization.
We investigate color superconducting phase at high density in the extended Nambu--Jona-Lasinio model for the two flavor quarks. Because of the non-renormalizability of the model, physical observables may depend on the regularization procedure, that is why we apply two types of regularization, the cut-off and the dimensional one to evaluate the phase structure, the equation of state and the relationship between the mass and the radius of a dense star. To obtain the phase structure we evaluate the minimum of the effective potential at finite temperature and chemical potential. The stress tensor is calculated to derive the equation of state. Solving the Tolman-Oppenheimer-Volkoff equation, we show the relationship between the mass and the radius of a dense star. The dependence on the regularization is found not to be small for these phenomena in the color superconducting phase.
We present the results obtained in the three-flavour ($N_f=3$) Nambu--Jona-Lasinio model which is extended by the $U(1)_A$ breaking six-quark t Hooft interaction and eight-quark interactions. We address the problem of stability, and some phenomenological consequences of the models with multi-quark interactions.
We study the interplay of the chiral and the color superconducting phase transitions in an extended Nambu--Jona-Lasinio model with a multi-quark interaction that produces the nonlinear chiral-diquark coupling. We observe that this nonlinear coupling adds up coherently with the omega^2 interaction to produce the chiral-color superconductivity coexistence phase or cancel each other depending on its sign. We discuss that large coexistence region in the phase diagram is consistent with the quark-diquark picture for the nucleon whereas its smallness is the prerequisite for the applicability of the Ginzburg-Landau approach.
We analyze the thermodynamical properties of a system of strongly interacting particles at vanishing quark chemical potential in the framework of a recently developed extension of the Polyakov-Nambu-Jona-Lasinio Model. In addition to eight quark interactions terms, non-canonical terms which explicitly break chiral symmetry up to the same order in a $1/N_c$ expansion ($N_c$ number of colors) are included. A recently proposed Polyakov potential is considered and the results are compared to lattice QCD data resulting in a favorable scenario for the recent model variants.
The properties of magnetized color superconducting cold dense quark matter under compact star conditions are investigated using a $SU(2)_f$ Nambu Jona-Lasinio (NJL)-type model in which the divergences are treated using a magnetic field independent regularization scheme in order to avoid unphysical oscillations. We study the phase diagram for several model parametrizations. The features of each phase are analyzed through the behavior of the chiral and superconducting condensates together with the different particle densities for increasing chemical potential or magnetic field. While confirming previous results derived for the zero magnetic field or isospin symmetric matter case, we show how the phases are modified in the presence of $beta$-equilibrium as well as color and electric charge neutrality conditions.
T.Fujihara
,T.Inagaki
,D.Kimura
.
(2005)
.
"Color Superconductivity and Radius of Quark Star in Extended NJL Model by Using the Dimensional Regularization"
.
Takahiro Fujihara
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا