Do you want to publish a course? Click here

Majorana CP-Violating Phases, RG Running of Neutrino Mixing Parameters and Charged Lepton Flavour Violating Decays

95   0   0.0 ( 0 )
 Added by Yasutaka Takanishi
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

We consider the MSSM with see-saw mechanism of neutrino mass generation and soft SUSY breaking with flavour-universal boundary conditions at the GUT scale, in which the lepton flavour violating (LFV) decays muto e + gamma, tauto mu + gamma, etc.,are predicted with rates that can be within the reach of present and planned experiments. These predictions depend critically on the matrix of neutrino Yukawa couplings bf{Y_{ u}} which can be expressed in terms of the light and heavy right-handed (RH) neutrino masses, neutrino mixing matrix U_{PMNS}, and an orthogonal matrix bf{R}. We investigate the effects of Majorana CP-violation phases in U_{PMNS}, and of the RG running of light neutrino masses and mixing angles from M_Z to the RH Majorana neutrino mass scale M_R, on the predictions for the rates of LFV decays muto e + gamma, tau to mu + gamma and tauto e + gamma. Results for neutrino mass spectrum with normal hierarchy, values of the lightest u-mass in the range 0 leq m_1 leq 0.30 eV, and quasi-degenerate heavy RH Majorana neutrinos in the cases of bf{R} = bf{1} and complex matrix bf{R} are presented. We find that the effects of the Majorana CP-violation phases and of the RG evolution of neutrino mixing parameters can change by few orders of magnitude the predicted rates of the LFV decays mu to e + gamma and tau to e + gamma. The impact of these effects on the tau to mu + gamma decay rate is typically smaller and only possible for m_1 > 0.10 eV. If the RG running effects are negligible, in a large region of soft SUSY breaking parameter space the ratio of the branching ratios of the mu to e + gamma and tau to e + gamma (tau to mu + gamma) decays is entirely determined in the case of bf{R} cong bf{1} by the values of the neutrino mixing parameters at M_Z.



rate research

Read More

85 - S. T. Petcov , T. Shindou 2006
We analyse the dependence of the rates of the LFV charged lepton decays mu to e + gamma, tau to e + gamma, tau to mu + gamma (l_i to l_j + gamma) and their ratios, predicted in the class of SUSY theories with see-saw mechanism of nu-mass generation and soft SUSY breaking with universal boundary conditions at the GUT scale, on the Majorana CP-violation phases in the PMNS neutrino mixing matrix and the ``leptogenesis CP-violating (CPV) parameters. The case of quasi-degenerate in mass heavy Majorana neutrinos is considered. The analysis is performed for normal hierarchical (NH), inverted hierarchical (IH) and quasi-degenerate (QD) light neutrino mass spectra. We show, in particular, that for NH and IH nu-mass spectrum and negligible lightest neutrino mass, all three l_i to l_j + gamma decay branching ratios, BR(l_i to l_j + gamma), depend on one Majorana phase, one leptogenesis CPV parameter and on the 3-neutrino oscillation parameters; if the CHOOZ mixing angle theta_13 is sufficiently large, they depend on the Dirac CPV phase in the PMNS matrix. The ``double ratios R(21/31) sim BR(mu to e + gamma)/BR(tau to e + gamma) and R(21/32) sim BR(mu to e + gamma)/BR(tau to mu + gamma) are determined by these parameters. The same Majorana phase enters into the NH and IH expressions for the effective Majorana mass in neutrinoless double beta decay, <m>.
A model independent analysis of the leptonic Dirac CP-violating phase ({delta}) is presented. The analysis uses the experimentally determined values of the mixing angles in the lepton mixing matrix in order to explore the allowed values for {delta} and possible general forms for the charged lepton mixing matrix. This is done under two general assumptions: 1) that the mixing matrix in the neutrino sector is the so-called tribimaximal matrix and hence the non zero value for {theta}13 arises due to the mixing matrix in the charged lepton sector and 2) the charged lepton mixing matrix is parametrized in terms of three angles and one phase. It is found that any value of {delta} is still consistent with the data and that, considering the assumptions above, regardless of the value for {delta}, the 1-3 mixing angle in the charged lepton sector is small but non zero and the 2-3 mixing angle can take values in only two possible small ranges around 0 and {pi}/2 respectively.
The Schechter-Valle theorem states that a positive observation of neutrinoless double-beta ($0 u beta beta$) decays implies a finite Majorana mass term for neutrinos when any unlikely fine-tuning or cancellation is absent. In this note, we reexamine the quantitative impact of the Schechter-Valle theorem, and find that current experimental lower limits on the half-lives of $0 u beta beta$-decaying nuclei have placed a restrictive upper bound on the Majorana neutrino mass $|delta m^{ee}_ u| < 7.43 times 10^{-29}~{rm eV}$ radiatively generated at the four-loop level. Furthermore, we generalize this quantitative analysis of $0 u beta beta$ decays to that of the lepton-number-violating (LNV) meson decays $M^- to {M^prime}^+ + ell^-_alpha + ell^-_beta$ (for $alpha$, $beta$ = $e$ or $mu$). Given the present upper limits on these rare LNV decays, we have derived the loop-induced Majorana neutrino masses $|delta m^{ee}_ u| < 9.7 times 10^{-18}~{rm eV}$, $|delta m^{emu}_ u| < 1.6 times 10^{-15}~{rm eV}$ and $|delta m^{mu mu}_ u| < 1.0 times 10^{-12}~{rm eV}$ from $K^- to pi^+ + e^- + e^-$, $K^- to pi^+ + e^- + mu^-$ and $K^- to pi^+ + mu^- + mu^-$, respectively. A partial list of radiative neutrino masses from the LNV decays of $D$, $D_s^{}$ and $B$ mesons is also given.
Many models for physics beyond the Standard Model predict lepton-flavour violating decays of charged leptons at a level which may become observable very soon. In the present paper we investigate the decays of a Tau into three charged leptons in a generic way, based on effective-field-theory methods, where the relevant operators are classified according to their chirality structure. We work out the decay distributions and discuss phenomenological implications.
We propose a new strategy for detecting the CP-violating phases and the effective mass of muon Majorana neutrinos by measuring observables associated with neutrino-antineutrino oscillations in $pi^{pm}$ decays. Within the generic framework of quantum field theory, we compute the non-factorizable probability for producing a pair of same-charged muons in $pi^{pm}$ decays as a distinctive signature of $ u_{mu}-bar{ u_{mu}}$ oscillations. We show that an intense neutrino beam through a long baseline experiment is favored for probing the Majorana phases. Using the neutrino-antineutrino oscillation probability reported by MINOS collaboration, a new stringent bound on the effective muon-neutrino mass is derived.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا