Do you want to publish a course? Click here

One-loop fermionic corrections to the instanton transition in two dimensional chiral Higgs model

67   0   0.0 ( 0 )
 Added by Yannis Burnier
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

The one-loop fermionic contribution to the probability of an instanton transition with fermion number violation is calculated in the chiral Abelian Higgs model in 1+1 dimensions, where the fermions have a Yukawa coupling to the scalar field. The dependence of the determinant on fermionic, scalar and vector mass is determined. We show in detail how to renormalize the fermionic determinant in partial wave analysis, which is convenient for computations.



rate research

Read More

276 - S. Actis 2007
We evaluate the two-loop corrections to Bhabha scattering from fermion loops in the context of pure Quantum Electrodynamics. The differential cross section is expressed by a small number of Master Integrals with exact dependence on the fermion masses me, mf and the Mandelstam invariants s,t,u. We determine the limit of fixed scattering angle and high energy, assuming the hierarchy of scales me^2 << mf^2 << s,t,u. The numerical result is combined with the available non-fermionic contributions. As a by-product, we provide an independent check of the known electron-loop contributions.
154 - D. M. Ghilencea 2018
Higgs inflation and $R^2$-inflation (Starobinsky model) are two limits of the same quantum model, hereafter called Starobinsky-Higgs. We analyse the two-loop action of the Higgs-like scalar $phi$ in the presence of: 1) non-minimal coupling ($xi$) and 2) quadratic curvature terms. The latter are generated at the quantum level with $phi$-dependent couplings ($tildealpha$) even if their tree-level couplings ($alpha$) are tuned to zero. Therefore, the potential always depends on both Higgs field $phi$ and scalaron $rho$, hence multi-field inflation is a quantum consequence. The effects of the quantum (one- and two-loop) corrections on the potential $hat W(phi,rho)$ and on the spectral index are discussed, showing that the Starobinsky-Higgs model is in general stable in their presence. Two special cases are also considered: first, for a large $xi$ in the quantum action one can integrate $phi$ and generate a refined Starobinsky model which contains additional terms $xi^2 R^2ln^p (xi vert Rvert/mu^2)$, $p=1,2$ ($mu$ is the subtraction scale). These generate corrections linear in the scalaron to the usual Starobinsky potential and a running scalaron mass. Second, for a small fixed Higgs field $phi^2 ll M_p^2/xi$ and a vanishing classical coefficient of the $R^2$-term, we show that the usual Starobinsky inflation is generated by the quantum corrections alone, for a suitable non-minimal coupling ($xi$).
In this paper we present the complete two-loop vertex corrections to scalar and pseudo-scalar Higgs boson production for general colour factors for the gauge group ${rm SU(N)}$ in the limit where the top quark mass gets infinite. We derive a general formula for the vertex correction which holds for conserved and non conserved operators. For the conserved operator we take the electromagnetic vertex correction as an example whereas for the non conserved operators we take the two vertex corrections above. Our observations for the structure of the pole terms $1/epsilon^4$, $1/epsilon^3$ and $1/epsilon^2$ in two loop order are the same as made earlier in the literature for electromagnetism. However we also elucidate the origin of the second order single pole term which is equal to the second order singular part of the anomalous dimension plus a universal function which is the same for the quark and the gluon. [3mm]
50 - M.Awramik , M.Czakon , A.Freitas 2004
The complete two-loop electroweak fermionic corrections to the effective leptonic weak mixing angle, sin^2(theta_eff), are now available. Here we shortly present the methods applied and illustrate the implications on indirect prediction for the Higgs boson mass within the standard model.
We investigate predictions on the triple Higgs boson couplings with radiative corrections in the model with an additional real singlet scalar field. In this model, the second physical scalar state ($H$) appears in addition to the Higgs boson ($h$) with the mass 125 GeV. The $hhh$ vertex is calculated at the one-loop level, and its possible deviation from the predictions in the standard model is evaluated under various theoretical constraints. The decay rate of $H to hh$ is also computed at the one-loop level. We also take into account the bound from the precise measurement of the $W$ boson mass, which gives the upper limit on the mixing angle $alpha$ between two physical Higgs bosons for a given value of the mass of $H$ ($m_H^{}$). We find that the deviation in the $hhh$ coupling from the prediction in the standard model can maximally be about 250%, 150% and 75% for $m_H^{}=300$, 500 and 1000 GeV, respectively, under the requirement that the cutoff scale of the model is higher than 3 TeV. We also discuss deviations from the standard model prediction in double Higgs boson production from the gluon fusion at the LHC using the one-loop corrected Higgs boson vertices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا