Do you want to publish a course? Click here

Diffractive SUSY particle production at the LHC

107   0   0.0 ( 0 )
 Added by Robi Peschanski
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

We give detailed predictions for diffractive SUSY Higgs boson and top squark associated productions at the LHC via the exclusive double pomeron exchange mechanism. We study how the SUSY Higgs cross section and the signal over background ratio are enhanced as a function of tangent beta in different regimes. The prospects are particularly promising in the ``anti-decoupling regime, which we study in detail. We also give the prospects for a precise measurement of the top squark mass using the threshold scan of central diffractive associated top squark events at the LHC.

rate research

Read More

We analyse diffractive electroweak vector boson production in hadronic collisions and show that the single diffractive W boson production asymmetry in rapidity is a particularly good observable at the LHC to test the concept of the flavour symmetric pomeron parton distributions. It may also provide an additional constraint for the parton distribution functions in the proton.
Weak-scale supersymmetry remains to be one of the best-motivated theories of physics beyond the Standard Model. We evaluate the sensitivities of the High Luminosity (HL) and High Energy (HE) upgrades of the LHC to gluinos and stops, decaying through the simplified topologies $tilde{g} to q bar{q} chi^0$, $tilde{g} to t bar{t} chi^0$ and $tilde{t} to t tilde{chi}^0$. Our HL-LHC analyses improve on existing experimental projections by optimizing the acceptance of kinematic variables. The HE-LHC studies represent the first 27 TeV analyses. We find that the HL-(HE-)LHC with 3 ab$^{-1}$ (15 ab$^{-1}$) of integrated luminosity will be sensitive to the masses of gluinos and stops at 3.2 (5.7) TeV and 1.5 (2.7) TeV, respectively, decaying to massless neutralinos.
79 - Andrew Chamblin 2004
If the fundamental Planck scale is near a TeV, then we should expect to see TeV scale black holes at the LHC. Similarly, if the scale of supersymmetry breaking is sufficiently low, then we might expect to see light supersymmetric particles in the next generation of colliders. If the mass of the supersymmetric particle is of order a TeV and is comparable to the temperature of a typical TeV scale black hole, then such sparticles will be copiously produced via Hawking radiation: The black hole will act as a resonance for sparticles, among other things. In this paper we compared various signatures for SUSY production at LHC, and we contrasted the situation where the sparticles are produced directly via parton fusion processes with the situation where they are produced indirectly through black hole resonances. We found that black hole resonances provide a larger source for heavy mass SUSY (squark and gluino) production than the direct pQCD-SUSY production via parton fusion processes depending on the values of the Planck mass and blackhole mass. Hence black hole production at LHC may indirectly act as a dominant channel for SUSY production. We also found that the differential cross section dsigma/dp_t for SUSY production increases as a function of the p_t (up to p_t equal to about 1 TeV or more) of the SUSY particles (squarks and gluinos), which is in sharp contrast with the pQCD predictions where the differential cross section dsigma/dp_t decreases as p_t increases for high p_t about 1 TeV or higher. This is a feature for any particle emission from TeV scale blackhole as long as the temperature of the blackhole is very high (~ TeV). Hence measurement of increase of dsigma/dp_t with p_t for p_t up to about 1 TeV or higher for final state particles might be a useful signature for blackhole production at LHC.
The prospects for central exclusive diffractive (CED) production of MSSM Higgs bosons at the LHC are reviewed. It is shown that the CED channels, making use of forward proton detectors at the LHC installed at 220 m and 420 m distance around ATLAS and / or CMS, can provide important information on the Higgs sector of the MSSM. In particular, CED production of the neutral CP-even Higgs bosons h and H and their decays into bottom quarks has the potential to probe interesting regions of the M_A--tan_beta parameter plane of the MSSM and may give access to the bottom Yukawa couplings of the Higgs bosons up to masses of M_H approx 250 GeV.
In this letter we estimate the contribution of the double diffractive processes for the diphoton production in $pp$ collisions at the Large Hadron Collider (LHC). The acceptance of the central and forward LHC detectors is taken into account and predictions for the invariant mass, rapidity and, transverse momentum distributions are presented. A comparison with the predictions for the Light -- by -- Light (LbL) scattering and exclusive diphoton production is performed. We demonstrate that the events associated to double diffractive processes can be separated and its study can be used to constrain the behavior of the diffractive parton distribution functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا