No Arabic abstract
We study the transverse momentum distribution of vector mesons produced in ultraperipheral relativistic heavy ion collisions (UPCs). In UPCs there is no strong interaction between the nuclei and the vector mesons are produced in photon-nucleus collisions where the (quasireal) photon is emitted from the other nucleus. Exchanging the role of both ions leads to interference effects. A detailed study of the transverse momentum distribution which is determined by the transverse momentum of the emitted photon, the production process on the target and the interference effect is done. We study the total unrestricted cross section and those, where an additional electromagnetic excitation of one or both of the ions takes place in addition to the vector meson production, in the latter case small impact parameters are emphasized.
We present a study of transverse momentum ($p_{T}$) spectra of unidentified charged particles in pp collisions at RHIC and LHC energies from $sqrt{s}$ = 62.4 GeV to 13 TeV using Tsallis/Hagedorn function. The power law of Tsallis/Hagedorn form gives excellent description of the hadron spectra in $p_{T}$ range from 0.2 to 300 GeV/$c$. The power index $n$ of the $p_T$ distributions is found to follow a function of the type $a+b/sqrt {s}$ with asymptotic value $a = 5.72$. The parameter $T$ governing the soft bulk contribution to the spectra remains almost same over wide range of collision energies. We also provide a Tsallis/Hagedorn fit to the $p_{T}$ spectra of hadrons in pPb and different centralities of PbPb collisions at $sqrt{s_{NN}}$ = 5.02 TeV. The data/fit shows deviations from the Tsallis distribution which become more pronounced as the system size increases. We suggest simple modifications in the Tsallis/Hagedorn power law function and show that the above deviations can be attributed to the transverse flow in low $p_T$ region and to the in-medium energy loss in high $p_T$ region.
The dilepton transverse momentum spectra and invariant mass spectra for low $p_T <0.15$~GeV/c in Au+Au collisions of different centralities at $sqrt{s_{NN}}$ = 200 GeV are studied within the parton-hadron-string dynamics (PHSD) transport approach. The PHSD describes the whole evolution of the system on a microscopic basis, incorporates hadronic and partonic degrees-of-freedom, the dynamical hadronization of partons and hadronic rescattering. For dilepton production in p+p, p+A and A+A reactions the PHSD incorporates the leading hadronic and partonic channels (also for heavy flavors) and includes in-medium effects such as a broadening of the vector meson spectral functions in hadronic matter and a modification of initial heavy-flavor correlations by interactions with the partonic and hadronic medium. The transport calculations reproduce well the momentum integrated invariant mass spectra from the STAR Collaboration for minimum bias Au+Au collisions at $sqrt{s_{NN}}$ = 200 GeV, while the description of the STAR data - when gating on low $p_T < 0.15$ GeV/c - is getting worse when going from central to peripheral collisions. An analysis of the transverse momentum spectra shows that the data for peripheral (60-80%) collisions are well reproduced for $p_T>0.2$ GeV/c while the strong peak at low $p_T < 0.15$ GeV/c, that shows up in the experimental data for the mass bins ($0.4 < M < 0.7$ GeV and $1.2 < M < 2.6$ GeV), is fully missed by the PHSD and cannot be explained by the standard in-medium effects. This provides a new puzzle for microscopic descriptions of low $p_T$ dilepton data from the STAR Collaboration.
The observed strong suppression of heavy flavored hadrons produced with high $p_T$, is caused by final state interactions with the created dense medium. Vacuum radiation of high-pT heavy quarks ceases at a short time scale, as is confirmed by pQCD calculations and by LEP measurements of the fragmentation functions of heavy quarks. Production of a heavy flavored hadrons in a dense medium is considerably delayed due to prompt breakup of the hadrons by the medium. This causes a strong suppression of the heavy quark yield because of the specific shape of the fragmentation function. The parameter-free description is in a good accord with available data.
We calculate the cross section and transverse-momentum ($P_{bot}$) distribution of the Breit-Wheeler process in relativistic heavy-ion collisions and their dependence on collision impact parameter ($b$). To accomplish this, the Equivalent Photon Approximation (EPA) was generalized in a more differential way compared to the approach traditionally used for inclusive collisions. In addition, a lowest-order QED calculation with straightline assumption was performed as a standard baseline for comparison. The cross section as a function of $b$ is consistent with previous calculations using the equivalent one-photon distribution function. Most importantly, the $P_{bot}$ shape from this model is strongly dependent on impact parameter and can quantitatively explain the $P_{bot}$ broadening observed recently by RHIC and LHC experiments. This broadening effect from the initial QED field strength should be considered in studying possible trapped magnetic field and multiple scattering in a Quark-Gluon Plasma (QGP). The impact-parameter sensitive observable also provides a controllable tool for studying extreme electromagnetic fields.
The dynamics of baryon-antibaryon annihilation and reproduction ($B{bar B} leftrightarrow 3 M$) is studied within the Parton-Hadron-String Dynamics (PHSD) transport approach for Pb+Pb and Au+Au collisions as a function of centrality from lower Super Proton Synchrotron (SPS) up to Large Hadron Collider (LHC) energies on the basis of the quark rearrangement model (QRM). At Relativistic Heavy-Ion Collider (RHIC) energies we find a small net reduction of baryon-antibaryon ($B {bar B}$) pairs while for the LHC energy of $sqrt{s_{NN}}$ = 2.76 GeV a small net enhancement is found relative to calculations without annihilation (and reproduction) channels. Accordingly, the sizeable difference between data and statistical calculations in Pb+Pb collisions at $sqrt{s_{NN}}$= 2.76 TeV for proton and antiproton yields cite{53}, where a deviation of 2.7 $sigma$ was claimed by the ALICE Collaboration, should not be attributed to a net antiproton annihilation. This is in line with the observation that no substantial deviation between the data and statistical hadronization model (SHM) calculations is seen for antihyperons, since according to the PHSD analysis the antihyperons should be modified by the same amount as antiprotons. As the PHSD results for particle ratios are in line with the ALICE data (within error bars) this might point towards a deviation from statistical equilibrium in the hadronization (at least for protons/antiprotons). Furthermore, we find that the $B {bar B} leftrightarrow 3 M$ reactions are more effective at lower SPS energies where a net suppression for antiprotons and antihyperons up to a factor of 2 -- 2.5 can be extracted from the PHSD calculations for central Au+Au collisions.