In the context of core-collapse supernovae, Strack and Burrows (Phys. Rev. D 71, 093004 (2005)) have recently developed an extension of the classical Boltzmann kinetic formalism that retains all the standard neutrino oscillation phenomenology, including resonant flavor conversion (the MSW effect), neutrino self-interactions, and the interplay between neutrino-matter coupling and flavor oscillations. In this thesis, I extend the Strack & Burrows formalism to incorporate general relativity, spin degrees of freedom, and a possible neutrino magnetic-moment/magnetic-field interaction.