Do you want to publish a course? Click here

The Discovery Potential of a Super B Factory

55   0   0.0 ( 0 )
 Added by David Hitlin
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

The Proceedings of the 2003 SLAC Workshops on flavor physics with a high luminosity asymmetric e+e- collider. The sensitivity of flavor physics to physics beyond the Standard Model is addressed in detail, in the context of the improvement of experimental measurements and theoretical calculations.



rate research

Read More

227 - T. Aushev , W. Bartel , A. Bondar 2010
This report presents the results of studies that investigate the physics reach at a Super $B$ factory, an asymmetric-energy $e^+e^-$ collider with a design luminosity of $8 times 10^{35}$ cm$^{-2}$s$^{-1}$, which is around 50 times as large as the peak luminosity achieved by the KEKB collider. The studies focus on flavor physics and CP violation measurements that could be carried out in the LHC era. The physics motivation, key observables, measurement methods and expected precisions are presented.
This report presents the results of studies that investigate the physics reach at a Super B factory, an asymmetric-energy e^+e^- collider with a design luminosity of 5 x 10^35 cm^-2s^-1, which is around 40 times as large as the peak luminosity achieved by the KEKB collider. The studies focus on flavor physics and CP violation measurements that could be carried out in the LHC era. The physics motivation, key observables, measurement methods and expected precisions are presented. The sensitivity studies are a part of the activities associated with the preparation of a Letter of Intent for SuperKEKB, which has been submitted recently.
The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 10$^{36}$ cm$^{-2}$ sec$^{-1}$. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the $Upsilon$(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low $beta_y^star$ without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron radiation applications.
112 - A. J. Bevan 2006
The main physics goals of a high luminosity e+e- flavor factory are discussed, including the possibilities to perform detailed studies of the CKM mechanism of quark mixing, and constrain virtual Higgs and non-standard model particle contributions to the dynamics of rare B_u,d,s decays. The large samples of $D$ mesons and tau leptons produced at a flavor factory will result in improved sensitivities on D mixing and lepton flavor violation searches, respectively. One can also test fundamental concepts such as lepton universality to much greater precision than existing constraints and improve the precision on tests of CPT from B meson decays. Recent developments in accelerator physics have demonstrated the feasibility to build an accelerator that can achieve luminosities of O(10^36) cm^-2 s^-1.
We calculate the next-to-leading order (NLO) radiative correction to the color-octet $h_c$ inclusive production in $e^+e^-$ annihilation at Super $B$ factory, within the nonrelativistic QCD factorization framework. The analytic expression for the NLO short-distance coefficient (SDC) accompanying the color-octet production operator $mathcal{O}_8^{h_c}(^1S_0)$ is obtained after summing both virtual and real corrections. The size of NLO correction for the color-octet production channel is found to be positive and substantial. The NLO prediction to the $h_c$ energy spectrum is plagued with unphysical endpoint singularity. With the aid of the soft-collinear effective theory, those large endpoint logarithms are resummed to the next-to-leading logarithmic (NLL) accuracy. Consequently, further supplemented with the non-perturbative shape function, we obtain the well-behaved predictions for the $h_c$ energy spectrum in the entire kinematic range, which awaits the examination by the forthcoming Belle II experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا