No Arabic abstract
In minimal Supergravity (mSUGRA) models the lightest supersymmetric particle (assumed to be the lightest neutralino) provides an excellent cold dark matter (CDM) candidate. The supersymmetric parameter space is significantly reduced, if the limits on the CDM relic density, obtained from WMAP data, are used. Assuming a vanishing trilinear scalar coupling A0 and fixed values of tan(beta), these limits result in narrow lines of allowed regions in the m0-m1/2 plane, the so called WMAP strips. In this analysis the trilinear coupling A0 has been varied within +/-4 TeV. A fixed non vanishing A0 value leads to a shift of the WMAP strips in the m0-m1/2 plane.
In mSUGRA models the lightest supersymmetric particle (assumed to be the lightest neutralino) provides an excellent cold dark matter (CDM) candidate. The supersymmetric parameter space is significantly reduced, if the limits on the CDM relic density, obtained from WMAP data, are used. Assuming a vanishing trilinear scalar coupling A0 and fixed values of tan(beta), these limits result in narrow lines of allowed regions in the m0-m12 plane, the so called WMAP strips. In this analysis the trilinear coupling A0 has been varied within +/-4TeV resulting in largely extended areas in the m0-m12 plane which are no longer excluded.
We determine under what conditions Scalar Tensor cosmologies predict an expansion rate which is reduced as compared to the standard General Relativity case. We show that ST theories with a single matter sector typically predict an enchanced Hubble rate in the past, as a consequence of the requirement of an attractive fixed point towards General Relativity at late times. Instead, when additional matter sectors with different conformal factors are added, the late time convergence to General Relativity is mantained and at the same time a reduced expansion rate in the past can be driven. For suitable choices of the parameters which govern the scalar field evolution, a sizeable reduction (up to about 2 orders of magnitude) of the Hubble rate prior to Big Bang Nucleosynthesis can be obtained. We then discuss the impact of these cosmological models on the relic abundance of dark matter is minimal Supergravity models: we show that the cosmologically allowed regions in parameter space are significantly enlarged, implying a change in the potential reach of LHC on the neutralino phenomenology.
The Higgs trilinear coupling $lambda_{hhh}$ is of great importance to understand the structure of the Higgs sector and allows searching for indirect signs of Beyond-the-Standard-Model (BSM) physics, even if new states are somehow hidden. In particular, in models with extended Higgs sectors, it is known that non-decouplings effects in BSM-scalar contributions at one loop can cause $lambda_{hhh}$ to deviate significantly from its SM prediction, raising the question of what happens at two loops. We review here our calculation of the leading two-loop corrections to $lambda_{hhh}$ in an aligned scenario of a Two-Higgs-Doublet Model. We find their typical size to be 10-20% of the one-loop corrections, meaning that they do not modify significantly the one-loop non-decoupling effects, but are not entirely negligible either.
The Higgs trilinear coupling provides a unique opportunity to study the structure of the Higgs sector and probe indirect signs of BSM Physics -- even if new states are somehow hidden. In models with extended Higgs sectors, large deviations in the Higgs trilinear coupling can appear at one loop because of non-decoupling effects in the radiative corrections involving the additional scalar states. It is then natural to ask how two-loop corrections modify this result, and whether new large corrections can appear again. We present new results on the dominant two-loop corrections to the Higgs trilinear coupling in several models with extended scalar sectors. We illustrate the analytical expressions with numerical examples and show that, while they remain smaller than their one-loop counterparts and do not modify significantly the non-decoupling effects observed at one loop, the two-loop corrections are not entirely negligible -- a typical size being 10-20% of the one-loop corrections.
We investigate the possible size of two-loop radiative corrections to the Higgs trilinear coupling $lambda_{hhh}$ in two types of models with extended Higgs sectors, namely in a Two-Higgs-Doublet Model (2HDM) and in the Inert Doublet Model (IDM). We calculate the leading contributions at two loops arising from the additional (heavy) scalars and the top quark of these theories in the effective-potential approximation. We include all necessary conversion shifts in order to obtain expressions both in the $overline{text{MS}}$ and on-shell renormalisation schemes, and in particular, we devise a consistent on-shell prescription for the soft-breaking mass of the 2HDM at the two-loop level. We illustrate our analytical results with numerical studies of simple aligned scenarios and show that the two-loop corrections to $lambda_{hhh}$ remain smaller than their one-loop counterparts, with a typical size being 10-20% of the one-loop corrections, at least while perturbative unitarity conditions are fulfilled. As a consequence, the existence of a large deviation of the Higgs trilinear coupling from the prediction in the Standard Model, which has been discussed in the literature at one loop, is not altered significantly.