Do you want to publish a course? Click here

Neutrinoless double beta decay and direct searches for neutrino mass

128   0   0.0 ( 0 )
 Added by Petr Vogel
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

Study of the neutrinoless double beta decay and searches for the manifestation of the neutrino mass in ordinary beta decay are the main sources of information about the absolute neutrino mass scale, and the only practical source of information about the charge conjugation properties of the neutrinos. Thus, these studies have a unique role in the plans for better understanding of the whole fast expanding field of neutrino physics.



rate research

Read More

Neutrinoless double beta decay, which is a very old and yet elusive process, is reviewed. Its observation will signal that lepton number is not conserved and the neutrinos are Majorana particles. More importantly it is our best hope for determining the absolute neutrino mass scale at the level of a few tens of meV. To achieve the last goal certain hurdles have to be overcome involving particle, nuclear and experimental physics. Nuclear physics is important for extracting the useful information from the data. One must accurately evaluate the relevant nuclear matrix elements, a formidable task. To this end, we review the sophisticated nuclear structure approaches recently been developed, which give confidence that the needed nuclear matrix elements can be reliably calculated. From an experimental point of view it is challenging, since the life times are long and one has to fight against formidable backgrounds. If a signal is found, it will be a tremendous accomplishment. Then, of course, the real task is going to be the extraction of the neutrino mass from the observations. This is not trivial, since current particle models predict the presence of many mechanisms other than the neutrino mass, which may contribute or even dominate this process. We will, in particular, consider the following processes: (i)The neutrino induced, but neutrino mass independent contribution. (ii)Heavy left and/or right handed neutrino mass contributions. (iii)Intermediate scalars (doubly charged etc). (iv)Supersymmetric (SUSY) contributions. We will show that it is possible to disentangle the various mechanisms and unambiguously extract the important neutrino mass scale, if all the signatures of the reaction are searched in a sufficient number of nuclear isotopes.
103 - J.D. Vergados 2016
The observation of neutrinoless double beta decay will have important consequences. First it will signal that lepton number is not conserved and the neutrinos are Majorana particles. Second, it represents our best hope for determining the absolute neutrino mass scale at the level of a few tens of meV. To achieve the last goal, however, certain hurdles have to be overcome involving particle, nuclear and experimental physics. Particle physics is important since it provides the mechanisms for neutrinoless double beta decay. In this review we emphasize the light neutrino mass mechanism. Nuclear physics is important for extracting the useful information from the data. One must accurately evaluate the relevant nuclear matrix elements, a formidable task. To this end, we review the recently developed sophisticated nuclear structure approaches, employing different methods and techniques of calculation. We also examine the question of quenching of the axial vector coupling constant, which may have important consequences on the size of the nuclear matrix elements. From an experimental point of view it is challenging, since the life times are extremely long and one has to fight against formidable backgrounds. One needs large isotopically enriched sources and detectors with good energy resolution and very low background.
We quantify the extent to which future experiments will test the existence of neutrinoless double-beta decay mediated by light neutrinos with inverted-ordered masses. While it remains difficult to compare measurements performed with different isotopes, we find that future searches will fully test the inverted ordering scenario, as a global, multi-isotope endeavor. They will also test other possible mechanisms driving the decay, including a large uncharted region of the allowed parameter space assuming that neutrino masses follow the normal ordering.
We propose a novel detection concept for neutrinoless double-beta decay searches. This concept is based on a Time Projection Chamber (TPC) filled with high-pressure gaseous xenon, and with separated-function capabilities for calorimetry and tracking. Thanks to its excellent energy resolution, together with its powerful background rejection provided by the distinct double-beta decay topological signature, the design discussed in this Letter Of Intent promises to be competitive and possibly out-perform existing proposals for next-generation neutrinoless double-beta decay experiments. We discuss the detection principles, design specifications, physics potential and R&D plans to construct a detector with 100 kg fiducial mass in the double-beta decay emitting isotope Xe(136), to be installed in the Canfranc Underground Laboratory.
We investigate neutrinoless double beta decay ($0 ubetabeta$) in the presence of sterile neutrinos with Majorana mass terms. These gauge-singlet fields are allowed to interact with Standard-Model (SM) fields via renormalizable Yukawa couplings as well as higher-dimensional gauge-invariant operators up to dimension seven in the Standard Model Effective Field Theory extended with sterile neutrinos. At the GeV scale, we use Chiral effective field theory involving sterile neutrinos to connect the operators at the level of quarks and gluons to hadronic interactions involving pions and nucleons. This allows us to derive an expression for $0 ubetabeta$ rates for various isotopes in terms of phase-space factors, hadronic low-energy constants, nuclear matrix elements, the neutrino masses, and the Wilson coefficients of higher-dimensional operators. The needed hadronic low-energy constants and nuclear matrix elements depend on the neutrino masses, for which we obtain interpolation formulae grounded in QCD and chiral perturbation theory that improve existing formulae that are only valid in a small regime of neutrino masses. The resulting framework can be used directly to assess the impact of $0 ubetabeta$ experiments on scenarios with light sterile neutrinos and should prove useful in global analyses of sterile-neutrino searches. We perform several phenomenological studies of $0 ubetabeta$ in the presence of sterile neutrinos with and without higher-dimensional operators. We find that non-standard interactions involving sterile neutrinos have a dramatic impact on $0 ubetabeta$ phenomenology, and next-generation experiments can probe such interactions up to scales of $mathcal O(100)$ TeV.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا