Do you want to publish a course? Click here

Probing small-x gluons by low-mass Drell-Yan pairs at RHIC and LHC

65   0   0.0 ( 0 )
 Added by Xiaofei Zhang
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

We calculate the transverse momentum distribution of low-mass Drell-Yan pairs in QCD perturbation theory with all-order resummation. We demonstrate that the transverse momentum distribution of low-mass Drell-Yan pairs is an advantageous source of constraints on the gluon distribution and its nuclear dependence. With the reduction in background, we argue that low-mass Drell-Yan pairs in the forward region provide a good and clean probe of small-x gluons at RHIC and LHC.



rate research

Read More

101 - George Fai , 2004
The transverse-momentum ($Q_T$) distribution of low-mass Drell-Yan pairs is calculated in QCD perturbation theory with all-order resummation of $alpha_s (alpha_s ln(Q^2_T/Q^2))^n$ type terms. We demonstrate that the rapidity distribution of low-mass Drell-Yan pairs at large-enough transverse momentum is an advantageous source of constraints on the gluon distribution and its nuclear dependence. We argue that low-mass Drell-Yan pairs in the forward region provide a good and clean probe of small-$x$ gluons at collider energies.
129 - Ian Balitsky 2021
The Drell-Yan process is studied in the framework of TMD factorization in the Sudakov region $sgg Q^2gg q_perp^2$ corresponding to recent LHC experiments with $Q^2$ of order of mass of Z-boson and transverse momentum of DY pair $sim$ few tens GeV. The DY hadronic tensors are expressed in terms of quark and quark-gluon TMDs with ${1over Q^2}$ and ${1over N_c^2}$ accuracy. It is demonstrated that in the leading order in $N_c$ the higher-twist quark-quark-gluon TMDs reduce to leading-twist TMDs due to QCD equation of motion. The resulting hadronic tensors depend on two leading-twist TMDs: $f_1$ responsible for total DY cross section, and Boer-Mulders function $h_1^perp$. The corresponding qualitative and semi-quantitative predictions seem to agree with LHC data on five angular coefficients $A_0-A_4$ of DY pair production. The remaining three coefficients $A_5-A_7$ are determined by quark-quark-gluon TMDs multiplied by extra ${1over N_c}$ so they appear to be relatively small in accordance with LHC results.
We analyze the Drell-Yan lepton pair production at forward rapidity at the Large Hadron Collider. Using the dipole framework for the computation of the cross section we find a significant suppression in comparison to the collinear factorization formula due to saturation effects in the dipole cross section. We develop a twist expansion in powers of Q_s^2/M^2 where Q_s is the saturation scale and M the invariant mass of the produced lepton pair. For the nominal LHC energy the leading twist description is sufficient down to masses of 6 GeV. Below that value the higher twist terms give a significant contribution.
Achieving the highest precision for theoretical predictions at the LHC requires the calculation of hard-scattering cross-sections that include perturbative QCD corrections up to (N)NNLO and electroweak (EW) corrections up to NLO. Parton distribution functions (PDFs) need to be provided with matching accuracy, which in the case of QED effects involves introducing the photon parton distribution of the proton, $xgamma(x,Q^2)$. In this work a determination of the photon PDF from fits to recent ATLAS measurements of high-mass Drell-Yan dilepton production at $sqrt{s}=8$ TeV is presented. This analysis is based on the xFitter framework, and has required improvements both in the APFEL program, to account for NLO QED effects, and in the aMCfast interface to account for the photon-initiated contributions in the EW calculations within MadGraph5_aMC@NLO. The results are compared with other recent QED fits and determinations of the photon PDF, consistent results are found.
78 - Ian Balitsky 2020
The Drell-Yan hadronic tensor for electromagnetic (EM) current is calculated in the Sudakov region $sgg Q^2gg q_perp^2$ with ${1over Q^2}$ accuracy, first at the tree level and then with the double-log accuracy. It is demonstrated that in the leading order in $N_c$ the higher-twist quark-quark-gluon TMDs reduce to leading-twist TMDs due to QCD equation of motion. The resulting tensor for unpolarized hadrons is EM gauge-invariant and depends on two leading-twist TMDs: $f_1$ responsible for total DY cross section, and Boer-Mulders function $h_1^perp$. The order-of-magnitude estimates of angular distributions for DY process seem to agree with LHC results at corresponding kinematics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا