Do you want to publish a course? Click here

A Calculational Formalism for One-Loop Integrals

165   0   0.0 ( 0 )
 Added by Nigel Glover
 Publication date 2004
  fields
and research's language is English
 Authors W.T. Giele




Ask ChatGPT about the research

We construct a specific formalism for calculating the one-loop virtual corrections for standard model processes with an arbitrary number of external legs. The procedure explicitly separates the infrared and ultraviolet divergences analytically from the finite one-loop contributions, which can then be evaluated numerically using recursion relations. Using the formalism outlined in this paper, we are in position to construct the next-to-leading order corrections to a variety of multi-leg QCD processes such as multi-jet production and vector-boson(s) plus multi-jet production at hadron colliders. The final limiting factor on the number of particles will be the available computer power.



rate research

Read More

Recent progress in unitarity techniques for one-loop scattering amplitudes makes a numerical implementation of this method possible. We present a 4-dimensional unitarity method for calculating the cut-constructible part of amplitudes and implement the method in a numerical procedure. Our technique can be applied to any one-loop scattering amplitude and offers the possibility that one-loop calculations can be performed in an automatic fashion, as tree-level amplitudes are currently done. Instead of individual Feynman diagrams, the ingredients for our one-loop evaluation are tree-level amplitudes, which are often already known. To study the practicality of this method we evaluate the cut-constructible part of the 4, 5 and 6 gluon one-loop amplitudes numerically, using the analytically known 4, 5 and 6 gluon tree-level amplitudes. Comparisons with analytic answers are performed to ascertain the numerical accuracy of the method.
We present a program for the numerical evaluation of scalar integrals and tensor form factors entering the calculation of one-loop amplitudes which supports the use of complex masses in the loop integrals. The program is built on an earlier version of the golem95 library, which performs the reduction to a certain set of basis integrals using a formalism where inverse Gram determinants can be avoided. It can be used to calculate one-loop amplitudes with arbitrary masses in an algebraic approach as well as in the context of a unitarity-inspired numerical reconstruction of the integrand.
We show how to evaluate tensor one-loop integrals in momentum space avoiding the usual plague of Gram determinants. We do this by constructing combinations of $n$- and $(n-1)$-point scalar integrals that are finite in the limit of vanishing Gram determinant. These non-trivial combinations of dilogarithms, logarithms and constants are systematically obtained by either differentiating with respect to the external parameters - essentially yielding scalar integrals with Feynman parameters in the numerator - or by developing the scalar integral in $D=6-2e$ or higher dimensions. As an explicit example, we develop the tensor integrals and associated scalar integral combinations for processes where the internal particles are massless and where up to five (four massless and one massive) external particles are involved. For more general processes, we present the equations needed for deriving the relevant combinations of scalar integrals.
131 - S. Abreu , H. Ita , F. Moriello 2020
We present the computation of a full set of planar five-point two-loop master integrals with one external mass. These integrals are an important ingredient for two-loop scattering amplitudes for two-jet-associated W-boson production at leading color in QCD. We provide a set of pure integrals together with differential equations in canonical form. We obtain analytic differential equations efficiently from numerical samples over finite fields, fitting an ansatz built from symbol letters. The symbol alphabet itself is constructed from cut differential equations and we find that it can be written in a remarkably compact form. We comment on the analytic properties of the integrals and confirm the extended Steinmann relations, which govern the double discontinuities of Feynman integrals, to all orders in $epsilon$. We solve the differential equations in terms of generalized power series on single-parameter contours in the space of Mandelstam invariants. This form of the solution trivializes the analytic continuation and the integrals can be evaluated in all kinematic regions with arbitrary numerical precision.
64 - A.Denner , S.Dittmaier 2006
We briefly sketch the methods for a numerically stable evaluation of tensor one-loop integrals that have been used in the calculation of the complete electroweak one-loop corrections to $PepPemto4 $fermions. In particular, the improvement of the new methods over the conventional Passarino--Veltman reduction is illustrated for some 4-point integrals in the delicate limits of small Gram (and other kinematical) determinants.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا