Do you want to publish a course? Click here

Nuclear charm and bottom production: a comparison among high energy approaches

90   0   0.0 ( 0 )
 Added by Magno Machado
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

We calculate the nucleon and nuclear photoproduction cross sections for heavy quarks within the $k_{perp}$-factorization formalism, considering the current high energy approaches which include nuclear and saturation effects. Our results demonstrate that a future experimental analysis of this process would allow to constraint the QCD dynamics at high energies.



rate research

Read More

We consider the photo-excitation of charm and bottom pentaquarks with the holographic assignments $[frac 12frac 12^-]_{S=0,1}$ and $[frac 12frac 32^-]_{S=1}$, in the photo-production of heavy vector mesons such as charmonia and bottomonia near threshold. We use a Witten diagram to combine the s-channel photo-excitation of holographic pentaquarks with a massive t-channel graviton or tensor glueball exchange, to extract the scattering amplitude for heavy meson photo-production in the threshold region. The pentaquark signal is too weak to be detected at current electron facilities.
We present predictions for a variety of single-inclusive observables that stem from the production of charm and bottom quark pairs at the 7 TeV LHC. They are obtained within the FONLL semi-analytical framework, and with two Monte Carlo + NLO approaches, MC@NLO and POWHEG. Results are given for final states and acceptance cuts that are as close as possible to those used by experimental collaborations and, where feasible, are compared to LHC data.
139 - F. Becattini 1997
It is shown that hadron abundances in high energy e+e-, pp and p{bar p} collisions, calculated by assuming that particles originate in hadron gas fireballs at thermal and partial chemical equilibrium, are in very good agreement with the data. The freeze-out temperature of the hadron gas fireballs turns out to be nearly constant over a large center of mass energy range and not dependent on the initial colliding system. The only deviation from chemical equilibrium resides in the incomplete strangeness phase space saturation. Preliminary results of an analysis of hadron abundances in S+S and S+Ag heavy ion collisions are presented.
445 - P. Castorina , H. Satz 2015
The interpretation of quark ($q$)- antiquark ($bar q$) pairs production and the sequential string breaking as tunneling through the event horizon of colour confinement leads to a thermal hadronic spectrum with a universal Unruh temperature, $T simeq 165$ Mev,related to the quark acceleration, $a$, by $T=a/2pi$. The resulting temperature depends on the quark mass and then on the content of the produced hadrons, causing a deviation from full equilibrium and hence a suppression of strange particle production in elementary collisions. In nucleus-nucleus collisions, where the quark density is much bigger, one has to introduce an average temperature (acceleration) which dilutes the quark mass effect and the strangeness suppression almost disappears.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا