No Arabic abstract
Exact expression is obtained for the differential cross section of elastic electroweak scattering of longitudinal polarized massive Dirac neutrinos with the electric charge and anomalous magnetic moment on a spinless nucleus. This formula contains all necessary information about the nature of the neutrino mass, charge and magnetic moment. Some of them state that between the mass of the neutrino its electric charge there exists an interconnection.
The ALPHA collaboration has successfully demonstrated the production and the confinement of cold antihydrogen, $overline{mathrm{H}}$. An analysis of trapping data allowed a stringent limit to be placed on the electric charge of the simplest antiatom. Charge neutrality of matter is known to a very high precision, hence a neutrality limit of $overline{mathrm{H}}$ provides a test of CPT invariance. The experimental technique is based on the measurement of the deflection of putatively charged $overline{mathrm{H}}$ in an electric field. The tendency for trapped $overline{mathrm{H}}$ atoms to be displaced by electrostatic fields is measured and compared to the results of a detailed simulation of $overline{mathrm{H}}$ dynamics in the trap. An extensive survey of the systematic errors is performed, with particular attention to those due to the silicon vertex detector, which is the device used to determine the $overline{mathrm{H}}$ annihilation position. The limit obtained on the charge of the $overline{mathrm{H}}$ atom is mbox{$ Q = (-1.3pm1.8pm0.4)times10^{-8}$}, representing the first precision measurement with $overline{mathrm{H}}$.
We reconsider the question of electric charge quantization, which leads to the existence of a dark charge nontrivially unified with weak isospin in a novel gauge symmetry, $SU(3)_Cotimes SU(2)_Lotimes U(1)_Yotimes U(1)_N$, where $Y$ and $N$ determine the electric and dark charges, respectively. The new model provides neutrino masses and dark matter appropriately, a direct consequence of the dark dynamics. We diagonalize the fermion, scalar, and gauge sectors as well as obtain relevant interactions, taking into account the kinetic mixing of $U(1)_{Y,N}$ gauge bosons. The new physics signals at colliders are examined. The dark matter observables are discussed.
The meson cloud distributions in $r$-space are extracted from the nucleon electromagnetic and axial form factors which are derived in the perturbative chiral quark model. The theoretical results indicate that the electric charge and axial charge distributions of the three-quark core are the same, the magnetic charge distributions of the meson cloud and three-quark core are more or less in the same region and peak at distances of around 2 $rm GeV^{-1}$, but the axial charge meson cloud distributes mainly inside the three-quark core.
The milliQan Collaboration has proposed to search for millicharged particles by looking for very weakly ionizing tracks in a detector installed in a cavern near the CMS experiment at the LHC. We note that another form of exotica can also yield weakly ionizing tracks. If a heavy neutrino has an electric dipole moment (EDM), then the milliQan experiment may be sensitive to it as well. In particular, writing the general dimension-5 operator for an EDM with a scale of a TeV and a one-loop factor, one finds a potential EDM as high as a few times $10^{-17}$ e-cm, and models exist where it is an order of magnitude higher. Redoing the Bethe calculation of ionization energy loss for an EDM, it is found that the milliQan detector is sensitive to EDMs as small as $10^{-17}$ e-cm. Using the production cross-section and analyzing the acceptance of the milliQan detector, we find the expected $95%$ exclusion and $3sigma$ sensitivity over the range of neutrino masses from $5-1000$ GeV for integrated luminosities of $300$ and $3000 {rm fb}^{-1}$ at the LHC.
We classify the meson and baryon long lived resonances considering quarks with electric charge 5/3 and $-4/3$ (in units of $vert evert$) predicted by some 3-3-1 models. Some of these exotic resonances have the usual electric charges $0,pm1$, others have $pm(3,4,5)$, and the lightest ones decaying only into leptons plus known resonances. We propose another heavy $SU(3)_H$ global symmetry under which hadrons involving only exotic quarks can be constructed.