No Arabic abstract
Composite Higgs models based on the chiral symmetries of ``theory space can produce Higgs bosons with masses of order 100 GeV from underlying strong dynamics at scales up to 10 TeV without fine tuning. This talk argues that flavor-violating interactions generically arising from underlying flavor dynamics constrain the Higgs compositeness scale to be at least 75 GeV, implying that significant fine-tuning is required. Bounds from CP violation and weak isospin violation are also discussed.
We explore the signals of axion-like particles (ALPs) in flavor-changing neutral current (FCNC) processes. The most general effective linear Lagrangian for ALP couplings to the electroweak bosonic sector is considered, and its contribution to FCNC decays is computed up to one-loop order. The interplay between the different couplings opens new territory for experimental exploration, as analyzed here in the ALP mass range $0<m_a lesssim 5$ GeV. When kinematically allowed, $Kto pi u bar{ u}$ decays provide the most stringent constraints for channels with invisible final states, while $B$-meson decays are more constraining for visible decay channels, such as displaced vertices in $Bto K^{(ast)} mu^+ mu^-$ data. The complementarity with collider constraints is discussed as well.
The Borexino detector measures solar neutrino fluxes via neutrino-electron elastic scattering. Observed spectra are determined by the solar-$ u_{e}$ survival probability $P_{ee}(E)$, and the chiral couplings of the neutrino and electron. Some theories of physics beyond the Standard Model postulate the existence of Non-Standard Interactions (NSIs) which modify the chiral couplings and $P_{ee}(E)$. In this paper, we search for such NSIs, in particular, flavor-diagonal neutral current interactions that modify the $ u_e e$ and $ u_tau e$ couplings using Borexino Phase II data. Standard Solar Model predictions of the solar neutrino fluxes for both high- and low-metallicity assumptions are considered. No indication of new physics is found at the level of sensitivity of the detector and constraints on the parameters of the NSIs are placed. In addition, with the same dataset the value of $sin^2theta_W$ is obtained with a precision comparable to that achieved in reactor antineutrino experiments.
We give a comprehensive study from flavor observables of pion, kaon, D_(s), and B_(s) mesons for limiting the Two Higgs Doublet Models (2HDMs) with natural flavor conservation, namely, Z_2 symmetric and aligned type of models. With use of the updated studies and analyses of B -> tau nu, D -> mu nu, D_s -> tau nu, D_s -> mu nu, K -> mu nu, Pi -> mu nu, B^0_s -> mu^+ mu^-, B^0_d -> mu^+ mu^-, tau -> K nu, tau -> Pi nu, B -> X_s gamma, K-K bar mixing, B^0_d-B^0_d bar mixing, and B^0_s-B^0_s bar mixing, we obtain constraints on the parameters in the 2HDMs. To calculate the constraints, we pay attention to a determination of CKM matrix elements and re-fit them to experimental data so that new contributions from additional Higgs bosons do not affect the determination. In addition, we discuss excesses of observables in the muon anomalous magnetic moment and the semi-tauonic B meson decays in the context of the 2HDM.
The perturbative QCD formula for minijet production consitutes an important ingredient in models describing the total cross section and multiparticle production in hadron-hadron scattering at high energies. Using arguments based on s-channel unitarity we set bounds on the minimum value of p_T for which the leading twist minijet formula can be used. For large impact parameters where correlations between partons appear to be small we find that the minimum value of p_T should be greater than 2.5 GeV for LHC energies and greater than 3.5 GeV for cosmic ray energies of about 50 TeV. We also argue that for collisions with values of impact parameters typical for heavy particle production the values of minimum p_T are likely to be considerably larger. We also analyze and quantify the potential role of saturation effects in the gluon density. We find that although saturation effects alone are not sufficient to restore unitarity, they are likely to play an important role at LHC energies.
In the scenario with four quark generations, we perform a fit using flavor-physics data and determine the allowed values -- preferred central values and errors -- of all of the elements of the 4X4 quark mixing matrix. In addition to the direct measurements of some of the elements, we include in the fit the present measurements of several flavor-changing observables in the K and B systems that have small hadronic uncertainties, and also consider the constraints from the vertex corrections to Z -> b bbar. The values taken for the masses of the fourth-generation quarks are consistent with the measurements of the oblique parameters and perturbativity of the Yukawa couplings. We find that |{tilde V}_{tb}| >= 0.98 at 3sigma, so that a fourth generation cannot account for any large deviation of |{tilde V}_{tb}| from unity. The fit also indicates that all the new-physics parameters are consistent with zero, and the mixing of the fourth generation with the other three is constrained to be very small: we obtain |{tilde V}_{ub}| < 0.06, |{tilde V}_{cb}| < 0.027, and |{tilde V}_{tb}| < 0.31 at 3sigma. Still, this does allow for the possibility of new-physics signals in Bd, Bs and rare K decays.