We analyze the prospects of a feasible, Brookhaven National Laboratory based, very long baseline (BVLB) neutrino oscillation experiment consisting of a conventional horn produced low energy wide band beam and a detector of 500 kT fiducial mass with modest requirements on event recognition and resolution. Such an experiment is intended primarily to determine CP violating effects in the neutrino sector for 3-generation mixing. We analyze the sensitivity of such an experiment. We conclude that this experiment will allow determination of the CP phase $delta_{CP}$ and the currently unknown mixing parameter $theta_{13}$, if $sin ^2 2 theta_{13} geq 0.01$, a value $sim 15$ times lower than the present experimental upper limit. In addition to $theta_{13}$ and $delta_{CP}$, the experiment has great potential for precise measurements of most other parameters in the neutrino mixing matrix including $Delta m^2_{32}$, $sin^2 2theta_{23}$, $Delta m^2_{21}times sin 2 theta_{12}$, and the mass ordering of neutrinos through the observation of the matter effect in the $ u_mu to u_e$ appearance channel.