No Arabic abstract
We consider the possibility of studying novel particles at the TeV scale with enhanced couplings to the top quark via top quark pair production at the LHC and VLHC. In particular we discuss the case of neutral scalar and vector resonances associated with a strongly interacting electroweak symmetry breaking sector. We constrain the couplings of these resonances by imposing appropriate partial wave unitarity conditions and known low energy constraints. We evaluate the new physics signals via WW -> tt~ for various models without making approximation for the initial state W bosons, and optimize the acceptance cuts for the signal observation. We conclude that QCD backgrounds overwhelm the signals in both the LHC and a 200 TeV VLHC, making it impossible to study this type of physics in the tt~ channel at those machines.
The Large Hadron Collider (LHC) is expected to provide proton-proton collisions at a centre-of-mass energy of 14 TeV, yielding millions of of top quark events. The top-physics potential of the two general purpose experiments, ATLAS and CMS, is discussed according to state-of-the-art simulation of both physics and detectors. An overview is given of the most important results with emphasis on the expected improvements in our understanding of physics connected to the top quark.
We perform a model-independent study for top-antitop and top-top resonances in the dilepton channel at the Large Hadtron Collider. In this channel, we can solve the kinematic system to obtain the momenta of all particles including the two neutrinos, and hence the resonance mass and spin. For discovering top-antitop resonances, the dilepton channel is competitive to the semileptonic channel because of the good resolution of lepton momentum measurement and small standard model backgrounds. Moreover, the charges of the two leptons can be identified, which makes the dilepton channel advantageous for discovering top-top resonances and for distinguishing resonance spins. We discuss and provide resolutions for difficulties associated with heavy resonances and highly boosted top quarks.
The top quark will be produced copiously at the LHC. This will make both detailed physics studies and the use of top quark decays for detector calibration possible. This talk reviews plans and prospects for top physics activities in the ATLAS and CMS experiments.
Six top signatures provide a novel probe of new physics. We discuss production of six top quarks as the decay products of a pair of top partners in the setting of a composite Higgs model, and argue that the six top signal may generically provide one of the first final states to show a discrepancy. We construct an analysis based on quantities such as $H_T$ and the numbers of jets which are tagged as boosted tops, $W$s, or containing $b$-tags, and show that the LHC with 3~ab$^{-1}$ can discover top partners with masses up to around 2.5 TeV in the six top signature.
The new CERN proton-proton collider, the LHC, is about to start in 2007 its data taking. Millions of top quarks will be available out of these data, allowing to perform a wide range of precision measurements and searches for new physics. An overview of the planned top physics program accessible with ttbar events is given for the ATLAS and CMS experiments. A particular emphasis is put on the precision measurements of the top mass, top polarization and searches for new physics in top production and decay.