Do you want to publish a course? Click here

Diphoton production in gluon fusion at small transverse momentum

138   0   0.0 ( 0 )
 Added by Pavel Nadolsky
 Publication date 2002
  fields
and research's language is English




Ask ChatGPT about the research

We discuss the production of photon pairs in gluon-gluon scattering in the context of the position-space resummation formalism at small transverse momentum. We derive the remaining unknown coefficients that arise at $O(alpha_S)$, as well as the remaining $O(alpha_S^2)$ coefficient that occurs in the Sudakov factor. We comment on the impact of these coefficients on the normalization and shape of the resummed transverse momentum distribution of photon pairs, which comprise an important background to Higgs boson production at the LHC.



rate research

Read More

We derive analytical results for unintegrated color dipole gluon distribution function at small transverse momentum. By Fourier transforming the $S$-matrix for large dipoles we derive the results in the form of a series of Bells polynomials. Interestingly, when resumming the series in leading log accuracy, the results showing up striking similarity with the Sudakov form factor with role play of coupling is being done by a constant that stems from the saddle point condition along the saturation line.
476 - U. DAlesio , F. Murgia , C. Pisano 2020
In this contribution, we will present a short overview of the transverse momentum dependent (TMD) approach as a tool for studying the 3-dimensional structure of hadrons in high-energy (un)polarized hadron collisions. We will then summarize the present status of a running research programme that aims at constraining the poorly known transverse momentum dependent gluon Sivers function, through the study of single spin asymmetries in quarkonium (mainly $J/psi$), pion, and $D$-meson production in polarized proton-proton collisions at RHIC. Finally, we will shortly discuss perspectives for this field of research, emphasizing in particular its role in the physics programme of LHC in the fixed-target setup and NICA.
We present a general analysis of the orbital angular momentum (OAM) distribution of gluons $L_g(x)$ inside the nucleon with particular emphasis on the small-$x$ region. We derive a novel operator representation of $L_g(x)$ in terms of Wilson lines and argue that it is approximately proportional to the gluon helicity distribution $L_g(x) approx -2Delta G(x)$ at small-$x$. We also compute longitudinal single spin asymmetry in exclusive diffractive dijet production in lepton-nucleon scattering in the next-to-eikonal approximation and show that the asymmetry is a direct probe of the gluon helicity/OAM distribution as well as the QCD odderon exchange.
We present an analytic computation of the gluon-initiated contribution to diphoton plus jet production at hadron colliders up to two loops in QCD. We reconstruct the analytic form of the finite remainders from numerical evaluations over finite fields including all colour contributions. Compact expressions are found using the pentagon function basis. We provide a fast and stable implementation for the colour- and helicity-summed interference between the one-loop and two-loop finite remainders in C++ as part of the NJet library.
Transverse-momentum-dependent (TMD) gluon distributions have different operator definitions, depending on the process under consideration. We study that aspect of TMD factorization in the small-x limit, for the various unpolarized TMD gluon distributions encountered in the literature. To do this, we consider di-jet production in hadronic collisions, since this process allows to be exhaustive with respect to the possible operator definitions, and is suitable to be investigated at small x. Indeed, for forward and nearly back-to-back jets, one can apply both the TMD factorization and Color Glass Condensate (CGC) approaches to compute the di-jet cross-section, and compare the results. Doing so, we show that both descriptions coincide, and we show how to express the various TMD gluon distributions in terms of CGC correlators of Wilson lines, while keeping Nc finite. We then proceed to evaluate them by solving the JIMWLK equation numerically. We obtain that at large transverse momentum, the process dependence essentially disappears, while at small transverse momentum, non-linear saturation effects impact the various TMD gluon distributions in very different ways. We notice the presence of a geometric scaling regime for all the TMD gluon distributions studied: the dipole one, the Weizsacker-Williams one, and the six others involved in forward di-jet production.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا