Nonlinear corrections to the DGLAP equations in view of the HERA data


Abstract in English

The effects of the first nonlinear corrections to the DGLAP evolution equations are studied by using the recent HERA data for the structure function $F_2(x,Q^2)$ of the free proton and the parton distributions from CTEQ5L and CTEQ6L as a baseline. By requiring a good fit to the H1 data, we determine initial parton distributions at $Q_0^2=1.4$ GeV$^2$ for the nonlinear scale evolution. We show that the nonlinear corrections improve the agreement with the $F_2(x,Q^2)$ data in the region of $xsim 3cdot 10^{-5}$ and $Q^2sim 1.5$ GeV$^2$ without paying the price of obtaining a worse agreement at larger values of $x$ and $Q^2$. For the gluon distribution the nonlinear effects are found to play an increasingly important role at $xlsim 10^{-3}$ and $Q^2lsim10$ GeV$^2$, but rapidly vanish at larger values of $x$ and $Q^2$. Consequently, contrary to CTEQ6L, the obtained gluon distribution at $Q^2=1.4$ GeV$^2$ shows a power-like growth at small $x$. Relative to the CTEQ6L gluons, an enhancement up to a factor $sim6$ at $x=10^{-5}$, $Q_0^2=1.4$ GeV$^2$ reduces to a negligible difference at $Q^2gsim 10$ GeV$^2$.

Download