At the chiral restoration/deconfinement transition, most hadrons undergo a Mott transition from being bound states in the confined phase to resonances in the deconfined phase. We investigate the consequences of this qualitative change in the hadron spectrum on final state interactions of charmonium in hot and dense matter, and show that the Mott effect for D-mesons leads to a critical enhancement of the J/Psi dissociation rate. Anomalous J/Psi suppression in the NA50 experiment is discussed as well as the role of the Mott effect for the heavy flavor kinetics in future experiments at the LHC. The status of our calculations of hadron-hadron cross sections using the quark interchange and chiral Lagrangian approaches is reviewed, and an Ansatz for a unification of these schemes is given.