Do you want to publish a course? Click here

Testing coupling relations in SUSY-QCD at a Linear Collider

69   0   0.0 ( 0 )
 Added by Arnd Brandenburg
 Publication date 2002
  fields
and research's language is English




Ask ChatGPT about the research

Supersymmetry predicts that gauge couplings are equal to the corresponding gaugino-sfermion-fermion Yukawa couplings. This prediction can be tested for the QCD sector of the MSSM by studying the processes eplus+eminus -> squark+antisquark+gluon and eplus+eminus -> squark+antiquark+gluino at a future linear collider. We present results for these processes at next-to-leading order in alpha_s in the framework of the MSSM. We find sizable SUSY-QCD corrections. The renormalization scale dependence is significantly reduced at next-to-leading order.



rate research

Read More

108 - A. Freitas , P. Z. Skands 2006
In order to establish supersymmetry (SUSY) at future colliders, the identity of gauge couplings and the corresponding Yukawa couplings between gauginos, sfermions and fermions needs to be verified. Here a first phenomenological study for determining the Yukawa coupling of the SUSY-QCD sector is presented, using a method which combines information from LHC and ILC.
The cross section for the reaction $e^+e^- to tbar{t} H$ depends sensitively on the top quark Yukwawa coupling $lambda_t$. We calculate the rate for $tbar{t}H$ production, followed by the decay $Hto bbar{b}$, for a Standard Model Higgs boson with 100 < m_H <130 GeV. We interface with ISAJET to generate QCD radiation, hadronization and particle decays. We also calculate the dominant $tbar{t}bbar{b}$ backgrounds from electroweak and QCD processes. We consider both semileptonic and fully hadronic decays of the $tbar{t}$ system. In our analysis, we attempt full reconstruction of the top quark and W boson masses in the generated events. The invariant mass of the remaining b-jets should show evidence of Higgs boson production. We estimate the accuracy with which $lambda_t$ can be measured at a linear e^+e^- collider. Our results, including statistical but not systematic errors, show that the top quark Yukawa coupling can be measured to 6-8 % accuracy with 1000 fb^{-1} at $E_{CM}=1 TeV$, assuming 100 % efficiency for b-jet tagging. The accuracy of the measurement drops to 17-22 % if only a 60 % efficiency for b-tagging is achieved.
The future linear collider will collide dense $e^+e^-$ bunches at high energies up to 1 TeV, generating very intense electromagnetic fields at the interaction point (IP). These fields are strong enough to lead to nonlinear effects which affect all IP processes and which are described by strong field physics theory. In order to test this theory, we propose an experiment that will focus an intense laser on the LC electron beam post-IP. Similar experiments at SLAC E144 have investigated nonlinear Compton scattering, Breit-Wheeler pair production using an electron beam of 46.6 GeV. The higher beam energies available at the future LC would allow more precise studies of these phenomena. Mass-shift and spin-dependent effects could also be investigated.
The current 7 TeV run of the LHC experiment shall be able to probe gluino and squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are found in the jets plus missing energy channel by the end of a 5 fb$^{-1}$ run, we explore the flavour constraints on three models with a CMSSM-like spectrum: the CMSSM itself, a Seesaw extension of the CMSSM, and Flavoured CMSSM. In particular, we focus on decays that might have been measured by the time the run is concluded, such as $B_stomumu$ and $muto egamma$. We also analyse constraints imposed by neutral meson bounds and electric dipole moments. The interplay between collider and flavour experiments is explored through the use of three benchmark scenarios, finding the flavour feedback useful in order to determine the model parameters and to test the consistency of the different models.
106 - Sandro Ambrosanio 1999
Assuming gauge-mediated supersymmetry breaking, we simulate precision measurements of fundamental parameters at a 500 GeV e+e- linear collider in the scenario where a neutralino is the next-to-lightest supersymmetric particle. Information on the supersymmetry breaking and the messenger sectors of the theory is extracted from realistic fits to the measured mass spectrum of the Minimal Supersymmetric Model particles and the next-to-lightest supersymmetric particle lifetime.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا