Do you want to publish a course? Click here

Prospects to measure neutrino oscillation pattern with very large area underground detector at very long baselines

53   0   0.0 ( 0 )
 Publication date 2002
  fields
and research's language is English




Ask ChatGPT about the research

The concept of a very long baseline neutrino experiment with quasi monochromatic neutrino beam and very large area underground detector is discussed. The detector could be placed in the existing 20 km tunnel at IHEP, Protvino. The High Intensity Proton Accelerators (HIPA) which are planned to be built in Japan (JAERI-KEK, baseline of 7000 km) and Germany (GSI, baseline of 2000 km) as well as the Main Injector at Fermilab (7600 km) are considered as possible sources of neutrino beams. The oscillations are analysed in the three-neutrino scheme taking into account terrestrial matter effects. In the proposed experiment it is feasible to observe the oscillation pattern as an unique proof of the existence of neutrino oscillations. Precise measurements of disappearance oscillation parameters of the muon neutrinos and antineutrinos can be done within a reasonable time.



rate research

Read More

Current long-baseline neutrino-oscillation experiments such as NO$ u$A and T2K are mainly sensitive to physics in the neighbourhood of the first oscillation maximum of the $ u_mu to u_e$ oscillation probability. The future Deep Underground Neutrino Experiment (DUNE) utilizes a wide-band beam tune optimized for CP violation sensitivity that fully covers the region of the first maxima and part of the second. In the present study, we elucidate the role of second oscillation maximum in addressing issues pertaining to unknowns in the standard three flavour paradigm. We consider a new DUNE beam tune optimized for coverage of the region of the second oscillation maxima which could be realized using proposed accelerator upgrades that provide multi-MW of power at proton energies of 8 GeV. We find that addition of the multi-MW 8 GeV beam to DUNE wide-band running leads to modest improvement in sensitivity to CP violation, mass hierarchy, the octant of $theta_{23}$ as well as the resolution of $delta$ and the Jarlskog invariant. Significant improvements to the DUNE neutrino energy resolution yield a much larger improvement in performance. We conclude that the standard DUNE wide-band beam when coupled with excellent detector resolution capabilities is sufficient to resolve $delta$ to better than $sim 12^circ$ for all values of $delta$ in a decade of running. For second maxima (8 GeV 3MW) beam running concurrently with the standard wide-band (80 GeV 2.2 MW) beam for 5 of the 10 years, it is found that $delta$ can be further resolved better than $sim 10^circ$ for all values of $delta$.
The proposed Long Baseline Neutrino Observatory (LBNO) initially consists of $sim 20$ kton liquid double phase TPC complemented by a magnetised iron calorimeter, to be installed at the Pyhasalmi mine, at a distance of 2300 km from CERN. The conventional neutrino beam is produced by 400 GeV protons accelerated at the SPS accelerator delivering 700 kW of power. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $delta_{CP}$ and matter. In this paper we show how this comprehensive physics case can be further enhanced and complemented if a neutrino beam produced at the Protvino IHEP accelerator complex, at a distance of 1160 km, and with modest power of 450 kW is aimed towards the same far detectors. We show that the coupling of two independent sub-MW conventional neutrino and antineutrino beams at different baselines from CERN and Protvino will allow to measure CP violation in the leptonic sector at a confidence level of at least $3sigma$ for 50% of the true values of $delta_{CP}$ with a 20 kton detector. With a far detector of 70 kton, the combination allows a $3sigma$ sensitivity for 75% of the true values of $delta_{CP}$ after 10 years of running. Running two independent neutrino beams, each at a power below 1 MW, is more within todays state of the art than the long-term operation of a new single high-energy multi-MW facility, which has several technical challenges and will likely require a learning curve.
We analyze the prospects of a feasible, Brookhaven National Laboratory based, very long baseline (BVLB) neutrino oscillation experiment consisting of a conventional horn produced low energy wide band beam and a detector of 500 kT fiducial mass with modest requirements on event recognition and resolution. Such an experiment is intended primarily to determine CP violating effects in the neutrino sector for 3-generation mixing. We analyze the sensitivity of such an experiment. We conclude that this experiment will allow determination of the CP phase $delta_{CP}$ and the currently unknown mixing parameter $theta_{13}$, if $sin ^2 2 theta_{13} geq 0.01$, a value $sim 15$ times lower than the present experimental upper limit. In addition to $theta_{13}$ and $delta_{CP}$, the experiment has great potential for precise measurements of most other parameters in the neutrino mixing matrix including $Delta m^2_{32}$, $sin^2 2theta_{23}$, $Delta m^2_{21}times sin 2 theta_{12}$, and the mass ordering of neutrinos through the observation of the matter effect in the $ u_mu to u_e$ appearance channel.
136 - J. P. Ya~nez , A. Kouchner 2015
Neutrino oscillations have been probed during the last few decades using multiple neutrino sources and experimental set-ups. In the recent years, very large volume neutrino telescopes have started contributing to the field. First ANTARES and then IceCube have relied on large and sparsely instrumented volumes to observe atmospheric neutrinos for combinations of baselines and energies inaccessible to other experiments. Using this advantage, the latest result from IceCube starts approaching the precision of other established technologies, and is paving the way for future detectors, such as ORCA and PINGU. These new projects seek to provide better measurements of neutrino oscillation parameters, and eventually determine the neutrino mass ordering. The results from running experiments and the potential from proposed projects are discussed in this review, emphasizing the experimental challenges involved in the measurements.
Reactor antineutrinos are used to study neutrino oscillation, search for signatures of non-standard neutrino interactions, and to monitor reactor operation for safeguard applications. The flux and energy spectrum of reactor antineutrinos can be predicted from the decays of the nuclear fission products. A comparison of recent reactor calculations with past measurements at baselines of 10-100m suggests a 5.7% deficit. Precision measurements of reactor antineutrinos at very short baselines O(1-10 m) can be used to probe this anomaly and search for possible oscillations into sterile neutrino species. This paper studies the experimental requirements for a new reactor antineutrino measurement at very short baselines and calculates the sensitivity of various scenarios. We conclude that an experiment at a typical research reactor provides 5{sigma} discovery potential for the favored oscillation parameter space with 3 years of data collection.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا