Do you want to publish a course? Click here

Strange Hadron Resonances and QGP Freeze-out

77   0   0.0 ( 0 )
 Added by Johann Rafelski
 Publication date 2001
  fields
and research's language is English
 Authors G. Torrieri




Ask ChatGPT about the research

We describe how the abundance and distribution of hyperon resonances can be used to probe freeze-out conditions. We demonstrate that resonance yields allow us to measure the time scales of chemical and thermal freeze-outs. This should permit a direct differentiation between the explosive sudden, and staged adiabatic freeze-out scenarios.



rate research

Read More

77 - C. Markert , 2002
Hyperon resonances are becoming an extremely useful tool allowing the study of the properties of hadronic fireballs made in heavy ion collisions. Their yield, compared to stable particles with the same quark composition, depends on hadronization conditions. The resonances short lifetime makes them ideal probes of the fireball chemical freeze-out mechanisms. An analysis of resonance abundance in heavy ion collisions should be capable of distinguishing between possible hadronization scenarios, in particular between sudden and gradual hadronization. In this paper, we review the existing SPS and RHIC experimental data on resonance production in heavy ion collisions, and discuss in terms of both thermal and microscopic models the yields of the two observed resonances, K* and Lambda(1520). We show how freeze-out properties, namely chemical freeze-out temperature and the lifetime of the interacting hadron phase which follows, can be related to resonance yields. Finally, we apply these methods to SPS and RHIC measurements, discuss the significance and interpretations of our findings, and suggest further measurements which may help in clarifying existing ambiguities.
In this article, we will present a systematic analysis of transverse momentum spectra of the strange hadron in different multiplicity events produced in pp collision at $sqrt{s}$ = 7 TeV, pPb collision at $sqrt{s_{NN}}$ = 5.02 TeV and PbPb collision at $sqrt{s_{NN}}$ = 2.76 TeV. The differential freeze out scenario of strange hadron $K^{0}_{s}$ assumed while analyzing the data using a Tsallis distribution which is modified to include transverse flow. The $p_{T}$ distributions of strange hadron in different systems are characterized in terms of the parameters namely, Tsallis temperature ($T$), power ($n$) and average transverse flow velocity ($beta$).
The Hadron Resonance Gas Model with two chemical freeze-outs, connected by conservation laws is considered. We are arguing that the chemical freeze-out of strange hadrons should occur earlier than the chemical freeze-out of non-strange hadrons. The hadron multiplicities measured in the heavy ion collisions for the center of mass energy range 2.7 - 200 GeV are described well by such a model. Based on a success of such an approach, a radical way to improve the Hadron Resonance Gas Model performance is suggested. Thus, we suggest to identify the hadronic reactions that freeze-out noticeably earlier or later that most of the others reactions (for different collision energies they may be different) and to consider a separate freeze-out for them.
We provide a framework to estimate the systematic uncertainties in chemical freeze-out parameters extracted from $chi^2$ analysis of thermal model, using hadron multiplicity ratios in relativistic heavy-ion collision experiments. Using a well known technique of graph theory, we construct all possible sets of independent ratios from available hadron yields and perform $chi^2$ minimization on each set. We show that even for ten hadron yields, one obtains a large number ($10^8$) of independent sets which results in a distribution of extracted freeze-out parameters. We analyze these distributions and compare our results for chemical freeze-out parameters and associated systematic uncertainties with previous results available in the literature.
112 - V. Magas , H. Satz 2003
Matter implies the existence of a large-scale connected cluster of a uniform nature. The appearance of such clusters as function of hadron density is specified by percolation theory. We can therefore formulate the freeze-out of interacting hadronic matter in terms of the percolation of hadronic clusters. The resulting freeze-out condition as function of temperature and baryo-chemical potential interpolates between resonance gas behaviour at low baryon density and repulsive nucleonic matter at low temperature, and it agrees well with data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا