No Arabic abstract
The Ultra High Energy Cosmic Ray (UHECR), by UHE neutrino-relic neutrino--Z showering in Hot Dark Halos (HDM), shows an energy spectra, an anisotropy following the relic neutrino masses and clustering in dark halo. The lighter are the relic neutrinos masses, the higher their corresponding Z resonance energy peaks. A twin light neutrino mass splitting may reflect into a twin Z resonance and a complex UHECR spectra modulation as a twin bump at at highest GZK energy cut-off. Each possible neutrino mass associates a characteristic dark halo size (galactic, local, super cluster) and its anisotropy due to our peculiar position within that dark matter distribution. The expected Z or WW,ZZ showering into proton-anti proton and neutron-anti neutron might correspond to peculiar clustering in observed UHECR at 10^{19}, 2 10^{19}, 4 10^{19} eV. A neutrino light HDM halo around a Mpc will allow to the UHECR neutron--anti-neutron secondary component at E_n> 10^{20} eV (due to Z decay) to arise playing a role comparable with the charged p-bar{p} ones. Their un-deflected n-bar{n} flight is shorter leading to a prompt and hard UHECR trace pointing toward the original UHECR source direction. The direct proton-antiproton pairs are split and spread by random magnetic fields into a more diluted and smeared and lower energy UHECR signal around the original source direction. Additional prompt TeVs signals by synchrotron radiation of electro-magnetic Z showering must also occur solving the Infrared-TeV cut-off. The observed hard doublet and triplets spectra, their time and space clustering already favour the rising key role of UHECR n-bar n secondaries originated by neutrino-Z tail shower.
From special relativity, photon annihilation process HepProcess{{Pgg}{Pgg}{to}{Pep}{Pem}} prevents cosmic photons with energies above a threshold to propagate a long distance in cosmic space due to their annihilation with low energy cosmic background photons. However, modifications of the photon dispersion relation from Lorentz invariance violation~(LIV) can cause novel phenomena beyond special relativity to happen. In this paper, we point out that these phenomena include optical transparency, threshold reduction and reappearance of ultra-high energy photons in cosmic space. The recent observation of near and above PeV photon events by the LHAASO Collaboration reveals the necessity to consider the threshold anomalies. Future observations of above threshold photons from extragalactic sources can testify LIV properties of photons.
Estimates are made of the ultra-high energy neutrino cross sections based on an extrapolation to very small Bjorken x of the logarithmic Froissart dependence in x shown previously to provide an excellent fit to the measured proton structure function F_2^p(x,Q^2) over a broad range of the virtuality Q^2. Expressions are obtained for both the neutral current and the charged current cross sections. Comparison with an extrapolation based on perturbative QCD shows good agreement for energies where both fit data, but our rates are as much as a factor of 10 smaller for neutrino energies above 10^9 GeV, with important implications for experiments searching for extra-galactic neutrinos.
Should projects of space experiments on ultra-high energy cosmic rays be supported, whatever AUGER results will turn out to be? We claim that this is indeed the case. It is now widely admitted that models of Lorentz symmetry violation (LSV) at the Planck scale based on power-like extrapolations down to cosmic-ray scales and able to account for a possible absence of the Greisen-Zatsepin-Kuzmin cutoff exist and require the existence of a privileged inertial rest frame, as we proposed in 1997 (paper physics/9704017 and subsequent work). The favoured energy dependence of the LSV parameter will then be quadratic rather than linear. This approach (weak doubly special relativity, WDSR) is different from the version of doubly special relativity defended by several authors, where the laws of Physics are required to be exactly identical in all inertial reference frames (strong doubly special relativity, SDSR). To date, WDSR patterns based on a deformation of special relativity with a privileged (vacuum) rest frame are the only clear and consistent candidate to explain a possible absence of the GZK cutoff invoking deviations from standard relativity. It is also to be emphasized, as in hep-ph/0510361, that the usual hypothesis of a power-like dependence of the LSV effective parameters not being altered by any intermediate energy scale is not the only possible one. Therefore, experiments sensitive to UHCR energies as high as possible become necessary irrespective of AUGER results.
Gamma-ray bursts (GRBs) have long been held as one of the most promising sources of ultra-high energy (UHE) neutrinos. The internal shock model of GRB emission posits the joint production of UHE cosmic ray (UHECRs, above 10^8 GeV), photons, and neutrinos, through photohadronic interactions between source photons and magnetically-confined energetic protons, that occur when relativistically-expanding matter shells loaded with baryons collide with one another. While neutrino observations by IceCube have now ruled out the simplest version of the internal shock model, we show that a revised calculation of the emission, together with the consideration of the full photohadronic cross section and other particle physics effects, results in a prediction of the prompt GRB neutrino flux that still lies one order of magnitude below the current upper bounds, as recently exemplified by the results from ANTARES. In addition, we show that by allowing protons to directly escape their magnetic confinement without interacting at the source, we are able to partially decouple the cosmic ray and prompt neutrino emission, which grants the freedom to fit the UHECR observations while respecting the neutrino upper bounds. Finally, we briefly present advances towards pinning down the precise relation between UHECRs and UHE neutrinos, including the baryonic loading required to fit UHECR observations, and we will assess the role that very large volume neutrino telescopes play in this.
Neutrino Physics is now entering precision era and neutrino-nucleon cross sections are an im- portant ingredient in all neutrino oscillation experiments. Specially, precise knowledge of neutrino- nucleon cross sections in Ultra High Energy (UHE) regime (TeV-PeV) is becoming more important now, as several experiments worldwide are going to observe processes involving such UHE neutrinos. In this work, we present new results on neutrino-nucleon cross-sections in this UHE regime, using QCD.