Do you want to publish a course? Click here

D and rho Mesons: Who resolves whom?

88   0   0.0 ( 0 )
 Added by Mirian E. Bracco
 Publication date 2001
  fields
and research's language is English




Ask ChatGPT about the research

The DDrho form factor is evaluated in a QCD sum rule calculation for both D and rho off-shell mesons. We study the double Borel sum rule for the three point function of two pseudoscalar and one vector meson currents. We find that the momentum dependence of the form factors is very different if the D or the rho meson is off-shell, but they lead to the same coupling constant in the DDrho vertex. We discuss two different approaches to extract the DDrho coupling constant.

rate research

Read More

103 - G.Kulzinger 1999
In the framework of non-perturbative QCD we calculate high-energy diffractive production of vector mesons $rh, rh$ and $rh$ by real and virtual photons on a nucleon. The initial photon dissociates into a $qbar{q}$-dipole and transforms into a vector meson by scattering off the nucleon which, for simplicity, is represented as quark-diquark. The relevant dipole-dipole scattering amplitude is provided by the non-perturbative model of the stochastic QCD vacuum. The wave functions result from considerations in the frame of light-front dynamics; the physical $rh$- and $rh$-mesons are assumed to be mixed states of an active 2S-excitation and some residual rest (2D- and/or hybrid state). We obtain good agreement with the experimental data and get an understanding of the markedly different $pi^+pi^-$-mass spectra for photoproduction and $e^+e^-$-annihilation.
We calculate diffractive photo- and leptoproduction of $rho$-, $rho$- and $rho$-mesons. The incoming photon dissociates into a $qbar{q}$-dipole which scatters on the nucleon and transforms into a vector meson state. The scattering amplitude is calculated in non-perturbative QCD with the model of the stochastic vacuum. Assuming that the physical $rho$- and $rho$-mesons are mixed states of an active 2S-excitation and some residual hybrid state which cannot be produced diffractively in lowest order QCD, we obtain good agreement with the data, especially the markedly different spectrum in the $pi^+pi^-$-invariant mass for photoproduction and $e^+e^-$-annihilation.
We compute couplings between the $rho$-meson and $D$- and $D^ast$-mesons - $D^{(ast)}rho D^{(ast)}$ - that are relevant to phenomenological meson-exchange models used to analyse nucleon-$D$-meson scattering and explore the possibility of exotic charmed nuclei. Our framework is built from elements constrained by Dyson-Schwinger equation studies in QCD, and therefore expresses a consistent, simultaneous description of light- and heavy-quarks and the states they constitute, We find that all interactions, including the three independent $D^{ast} rho ,D^{ast}$ couplings, differ markedly amongst themselves in strength and also in range, as measured by their evolution with $rho$-meson virtuality. As a consequence, it appears that no single coupling strength or parametrization can realistically be employed in the study of interactions between $D^{(ast)}$-mesons and matter.
140 - G.Kulzinger 1998
We present a non-perturbative QCD calculation of high-energy diffractive photo- and leptoproduction of vector mesons $rho$, $rho$ and $rho$ on a nucleon. The initial photon splits up in a $qbar{q}$-dipole and transforms into a vector meson by scattering on the quark-diquark nucleon. The dipole-dipole scattering amplitude is provided by the non-perturbative model of the stochastic QCD vacuum, the wave functions result from considerations on the light-cone. We assume the physical $rho$- and $rho$-states to be mixed states of an active 2S-excitation and a rest whose coupling to the photon is suppressed. We obtain good agreement with the experimental data and get an understanding of the markedly different spectrum in the $pi^+pi^-$-invariant mass for photoproduction and $e^+e^-$-annihilation.
The investigation in the work of the reaction electron-positron to omega and pi0 mesons in the 3P0 nonrelativistic quark model reveals that the reaction electron-positron to omega and pi0 mesons process at the energy region from the omega and pi mesons threshold to 2.0 GeV is dominated by the two-step process in which the primary quark-antiquark pair first forms rho and rho mesons and then the vector mesons decay into omega and pi. With rho(1450) and rho(1700) mainly in 2S and 1D states respectively, the experimental data for the cross section of the reaction electron-positron to omega and pi0 mesons are well produced in the 3P0 quark model. The work supports the argument that rho(1450) is mainly a 2S meson and rho(1700) a 1D meson.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا