Do you want to publish a course? Click here

Top-quark rare decay $tto c h$ in R-parity-violating SUSY

169   0   0.0 ( 0 )
 Added by Tao Han
 Publication date 2001
  fields
and research's language is English




Ask ChatGPT about the research

The flavor-changing top-quark decay $tto c h$, where $h$ is the lightest CP-even Higgs boson in the minimal supersymmetric standard model, is examined in the R-parity-violating supersymmetric model. Within the existing bounds on the relevant R-parity-violating couplings, the branching fraction for $tto c h$ can be as large as about $10^{-5}$ in some part of the parameter space.



rate research

Read More

The scalar partner of the top quark (the stop) is relatively light in many models of supersymmetry breaking. We study the production of stops at the Large Hadron Collider (LHC) and their subsequent decays through baryon-number violating couplings such that the final state contains no leptons. A detailed analysis performed using detector level observables demonstrate that stop masses upto $sim 600 gev$ may be explored at the LHC depending on the branching ratios for such decays and the integrated luminosity available. Extended to other analogous scenarios, the analysis will, generically, probe even larger masses.
144 - J. I. Aranda 2009
The recently observed mass difference of the $D^0-overline{D^0}$ mixing is used to predict the branching ratios of the rare top quark decays $tto ugamma$ and $tto ug$ in a model independent way using the effective Lagrangian approach. It is found that $Br(tto ugamma)<4times 10^{-4}$ and $Br(tto ug)<2times 10^{-3}$, which still may be within reach of the LHC collider.
R-parity violating supersymmetric models (RPV SUSY) are becoming increasingly more appealing than its R-parity conserving counterpart in view of the hitherto non-observation of SUSY signals at the LHC. In this talk, RPV scenarios where neutrino masses are naturally generated are discussed, namely RPV through bilinear terms (bRPV) and the mu from nu supersymmetric standard model. The latter is characterised by a rich Higgs sector that easily accommodates a 125-GeV Higgs boson. The phenomenology of such models at the LHC is reviewed, giving emphasis on final states with displaced objects, and relevant results obtained by LHC experiments are presented. The implications for dark matter for these theoretical proposals is also addressed.
104 - C. Schwanenberger 2004
Searches for pair and single production of supersymmetric particles under the assumption that R-parity is violated via a single dominant coupling are presented. A subset of the most recent results from LEP, Tevatron and HERA is selected. The data are in agreement with the Standard Model expectation. Limits on the production cross sections and the masses of supersymmetric particles are derived.
144 - S. Bar-Shalom , G. Eilam , A. Soni 1998
Widths for the new flavor changing top quark decay t-->c+sneutrino or for the reversed sneutrino decay sneutrino-->t+c(bar) are calculated in the MSSM without R-parity conservation. For large tanbeta, e.g., tanbeta ~ m_t/m_b ~ 40, Br(t-->c+sneutrino) > 10^{-5} or Br(sneutrino-->t+c(bar)) > 10^{-6} in a relatively wide range of the supersymmetric parameter space as long as there is more than one non-zero R-parity violating coupling. In the best cases, with a typical squark mass around 100 GeV, we find that Br(t-->c+sneutrino) ~ 10^{-4} - 10^{-3} or Br(sneutrino-->t+c(bar)) ~ 10^{-5} - 10^{-4}. For tanbeta ~ O(1) the corresponding branching ratios for both top or sneutrino decays are too small to be measured at the LHC. Therefore, the decays t-->c+sneutrino or sneutrino-->t+c(bar) appear to be sensitive to tanbeta and may be detected at the LHC. The branching ratios of the corresponding decays to an up quark instead of a charm quark, e.g., t-->u+sneutrino or sneutrino-->t+u(bar), may also be similar.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا