No Arabic abstract
The initial distribution of gluons at the very early times after a high energy heavy ion collision is described by the bulk scale $Q_s$ of gluon saturation in the nuclear wavefunction. The subsequent evolution of the system towards kinetic equilibrium is described by a non-linear Landau equation for the single particle distributions cite{Mueller1,Mueller2}. In this paper, we solve this equation numerically for the idealized initial conditions proposed by Mueller, and study the evolution of the system to equilibrium. We discuss the sensitivity of our results on the dynamical screening of collinear divergences. In a particular model of dynamical screening, the convergence to the hydrodynamic limit is seen to be rapid relative to hydrodynamic time scales. The equilibration time, the initial temperature, and the chemical potential are shown to have a strong functional dependence on the initial gluon saturation scale $Q_s$.
We illustrate with both a Boltzmann diffusion equation and full simulations of jet propagation in heavy-ion collisions within the Linear Boltzmann Transport (LBT) model that the spatial gradient of the jet transport coefficient perpendicular to the propagation direction can lead to a drift and asymmetry in the transverse momentum distribution. Such an asymmetry depends on both the spatial position along the transverse gradience and the propagating length. It can be used to localize the initial jet production positions for more detailed studies of jet quenching and properties of the quark-gluon plasma in heavy-ion collisions.
This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09 which was part of Working Group-4. Discussion and work on some aspects of Quark-Gluon Plasma believed to have created in heavy-ion collisions and in early universe are reported.
Recent lattice QCD data on higher order susceptibilities of Charm quarks provide the opportunity to explore Charm quark equilibration in the early quark gluon plasma (QGP) phase. Here, we propose to use the lattice data on second and fourth order net Charm susceptibilities to infer the Charm quark equilibration temperature and the corresponding volume, in the early QGP stage, via a combined analysis of experimentally measured multiplicity fluctuations. Furthermore, the first perturbative results for the second and fourth order Charm quark susceptibilities and their ratio are presented.
Whether quark- and gluon-initiated jets are modified differently by the quark-gluon plasma produced in heavy-ion collisions is a long-standing question that has thus far eluded a definitive experimental answer. A crucial complication for quark-gluon discrimination in both proton-proton and heavy-ion collisions is that all measurements necessarily average over the (unknown) quark-gluon composition of a jet sample. In the heavy-ion context, the simultaneous modification of both the fractions and substructure of quark and gluon jets by the quark-gluon plasma further obscures the interpretation. Here, we demonstrate a fully data-driven method for separating quark and gluon contributions to jet observables using a statistical technique called topic modeling. Assuming that jet distributions are a mixture of underlying quark-like and gluon-like distributions, we show how to extract quark and gluon jet fractions and constituent multiplicity distributions as a function of the jet transverse momentum. This proof-of-concept study is based on proton-proton and heavy-ion collision events from the Monte Carlo event generator Jewel with statistics accessible in Run 4 of the Large Hadron Collider. These results suggest the potential for an experimental determination of quark and gluon jet modifications.
Four models for the initial conditions of a fluid dynamic description of high energy heavy ion collisions are analysed and compared. We study expectation values and event-by-event fluctuations in the initial transverse energy density profiles from Pb-Pb collisions. Specifically, introducing a Fourier-Bessel mode expansion for fluctuations, we determine expectation values and two-mode correlation functions of the expansion coefficients. The analytically solveable independent point-sources model is compared to an initial state model based on Glauber theory and two models based on the Color Glass Condensate framework. We find that the large wavelength modes of all investigated models show universal properties for central collisions and also discuss to which extent general properties of initial conditions can be understood analytically.