No Arabic abstract
We fitted the pi-pi mass distribution in the range 0.5 < mpipi < 1.1 GeV measured in hard exclusive positron-proton reactions at HERA by the form dictated by QCD at leading twist level. Extracted parameters are related to valence quark distribution in the pion, and to the pion and rho meson distribution amplitudes. We obtain, for the first time, a measurement of the second Gegenbauer coefficient of the rho meson distribution amplitude: $a_2^{(rho)}= -0.10pm 0.20 $ for a photon virtuality of <Q^2>=21.2 GeV^2.
We present a non-perturbative QCD calculation of high-energy diffractive photo- and leptoproduction of vector mesons $rho$, $rho$ and $rho$ on a nucleon. The initial photon splits up in a $qbar{q}$-dipole and transforms into a vector meson by scattering on the quark-diquark nucleon. The dipole-dipole scattering amplitude is provided by the non-perturbative model of the stochastic QCD vacuum, the wave functions result from considerations on the light-cone. We assume the physical $rho$- and $rho$-states to be mixed states of an active 2S-excitation and a rest whose coupling to the photon is suppressed. We obtain good agreement with the experimental data and get an understanding of the markedly different spectrum in the $pi^+pi^-$-invariant mass for photoproduction and $e^+e^-$-annihilation.
The results on the photo- and electroexcitation amplitudes of most nucleon resonances in the mass range up to 2.0 GeV determined from the CLAS experimental data on exclusive $pi^+pi^-p$ photo-/electroproduction off protons in collaboration between the Jefferson Lab and Moscow State University are presented. The first and only available results on electroexcitation amplitudes from CLAS in a wide range of photon virtualities $Q^2$ $<$ 5.0 GeV$^2$ revealed the nucleon resonance structure as a complex interplay between the inner core of three dressed quarks and external meson-baryon cloud. These results shed light on the strong QCD dynamics which underlines the generation of excited nucleon states of different structural features from confined quarks and gluons. The future prospects of these studies in the new era of experiments with the CLAS12 detector, which started successfully in Spring of 2018, are outlined.
Nucleon resonance contributions to the inclusive proton $F_2$ and $F_L$ structure functions are computed from resonance electroexcitation amplitudes in the mass range up to 1.75 GeV extracted from CLAS exclusive meson electroproduction data. Taking into account for the first time quantum interference effects, the resonance contributions are compared with inclusive proton structure functions evaluated from $(e,eX)$ cross section data and the longitudinal to transverse cross section ratio. Contributions from isospin-1/2 and 3/2 resonances remain substantial over the entire range of photon virtualities $Q^2 lesssim 4$ GeV$^2$, where their electroexcitation amplitudes have been obtained, and their $Q^2$ evolution displays pronounced differences in the first, second and third resonance regions. We compare the structure functions in the resonance region with those computed from parton distributions fitted to deep-inelastic scattering data, and extrapolated to the resonance region, providing new quantitative assessments of quark-hadron duality in inclusive electron-proton scattering.
We calculate cross sections for the exclusive diffractive leptoproduction of $rho$-mesons, $gamma^*~p~to~rho~p$, within the framework of high-energy factorization. Cross sections for longitudinally and transversally polarized mesons are shown. We employ a wide variety of unintegrated gluon distributions available in the literature and compare to HERA data. The resulting cross sections strongly depend on the choice of unintegrated gluon distribution. We also present predictions for the proton target in the kinematics of the Brookhaven EIC.
The strange particle production induced by (anti)neutrino off nucleon has been studied for $|Delta S|=0$ and $|Delta S|=1$ channels. The reactions those we have considered are for the production of single kaon/antikaon, eta and associated particle production processes. We have developed a microscopical model based on the SU(3) chiral Lagrangian. The basic parameters of the model are $f_pi$, the pion decay constant, Cabibbo angle, the proton and neutron magnetic moments and the axial vector coupling constants for the baryons octet. For antikaon production we have also included $Sigma^*$(1385) resonance and for eta production $S_{11}$(1535) and $S_{11}$(1650) resonances are included.