We impose the axial and vector Ward identities on local fermion bilinear operators in the Sheikholesalami-Wohlert discretization of fermions. From this we obtain all the coefficients needed to improve the theory at O(a), as well as the scale and scheme independent renormalization constants, Z_A, Z_V and Z_S/Z_P.
Renormalization constants ($Z$-factors) of vector and axial-vector currents are determined non-perturbatively in quenched QCD for a renormalization group improved gauge action and a tadpole improved clover quark action using the Schrodinger functional method. Non-perturbative values of $Z$-factors turn out to be smaller than one-loop perturbative values by $O(15%)$ at lattice spacing of $a^{-1}approx$ 1 GeV. The pseudoscalar and vector meson decay constants calculated with the non-perturbative $Z$-factors show a much better scaling behavior compared to previous results obtained with tadpole improved one-loop $Z$-factors. In particular, the non-perturbative $Z$-factors normalized at infinite physical volume show that scaling violation of the decay constants are within about 10% up to the lattice spacing $a^{-1}sim 1$ GeV. The continuum estimates obtained from data in the range $a^{-1}=$ 1 -- 2 GeV agree with those determined from finer lattices ($a^{-1}sim 2-4$ GeV) with the standard action.
Renormalization factors relate the observables obtained on the lattice to their measured counterparts in the continuum in a suitable renormalization scheme. They have to be computed very precisely which requires a careful treatment of lattice artifacts. In this work we present a method to suppress these artifacts by subtracting one-loop contributions proportional to the square of the lattice spacing calculated in lattice perturbation theory.
Renormalization constants of vector ($Z_V$) and axial-vector ($Z_A$) currents are determined non-perturbatively in quenched QCD for a renormalization group improved gauge action and a tadpole improved clover quark action using the Schrodinger functional method. Non-perturbative values of $Z_V$ and $Z_A$ turn out to be smaller than the one-loop perturbative values by $O(10%)$ at $a^{-1}approx 1$ GeV. A sizable scaling violation of meson decay constants $f_pi$ and $f_rho$ observed with the one-loop renormalization factors remains even with non-perturbative renormalization.
The determination of renormalization factors is of crucial importance in lattice QCD. They relate the observables obtained on the lattice to their measured counterparts in the continuum in a suitable renormalization scheme. Therefore, they have to be computed as precisely as possible. A widely used approach is the nonperturbative Rome-Southampton method. It requires, however, a careful treatment of lattice artifacts. In this paper we investigate a method to suppress these artifacts by subtracting one-loop contributions to renormalization factors calculated in lattice perturbation theory. We compare results obtained from a complete one-loop subtraction with those calculated for a subtraction of contributions proportional to the square of the lattice spacing.
We present our progress in the non-perturbative O(a) improvement and renormalization of tensor currents in three-flavor lattice QCD with Wilson-clover fermions and tree-level Symanzik improved gauge action. The mass-independent O(a) improvement factor of tensor currents is determined via a Ward identity approach, and their renormalization group running is calculated via recursive finite-size scaling techniques, both implemented within the Schrodinger functional framework. We also address the matching factor between bare and renormalization group invariant currents for a range of lattice spacings < 0.1 fm, relevant for phenomenological large-volume lattice QCD applications.