Do you want to publish a course? Click here

Inverse Symmetry Breaking on the lattice: an accurate MC study

61   0   0.0 ( 0 )
 Added by Giuseppe Bimonte
 Publication date 1999
  fields
and research's language is English




Ask ChatGPT about the research

We present here a new MC study of ISB at finite temperature in a $Z_2times Z_2$ $lambdaphi^4$ model in four dimensions. The results of our simulations, even if not conclusive, are favourable to ISB. Detection of the effect required measuring some critical couplings with six-digits precision, a level of accuracy that could be achieved only by a careful use of FSS techniques. The gap equations for the Debye masses, resulting from the resummation of the ring diagrams, seem to provide a qualitatively correct description of the data, while the simple one-loop formulae appear to be inadequate.



rate research

Read More

We investigate QCD-like theory with exact center symmetry, with emphasis on the finite-temperature phase transition concerning center and chiral symmetries. On the lattice, we formulate center symmetric $SU(3)$ gauge theory with three fundamental Wilson quarks by twisting quark boundary conditions in a compact direction ($Z_3$-QCD model). We calculate the expectation value of Polyakov loop and the chiral condensate as a function of temperature on 16^3 x 4 and 20^3 x 4 lattices along the line of constant physics realizing $m_{PS}/m_{V}=0.70$. We find out the first-order center phase transition, where the hysteresis of the magnitude of Polyakov loop exists depending on thermalization processes. We show that chiral condensate decreases around the critical temperature in a similar way to that of the standard three-flavor QCD, as it has the hysteresis in the same range as that of Polyakov loop. We also show that the flavor symmetry breaking due to the twisted boundary condition gets qualitatively manifest in the high-temperature phase. These results are consistent with the predictions based on the chiral effective model in the literature. Our approach could provide novel insights to the nonperturbative connection between the center and chiral properties.
We evaluate the so-called Bose-ghost propagator Q(p^2) for SU(2) gauge theory in minimal Landau gauge, considering lattice volumes up to 120^4 and physical lattice extents up to 13.5 f. In particular, we investigate discretization effects, as well as the infinite-volume and continuum limits. We recall that a nonzero value for this quantity provides direct evidence of BRST-symmetry breaking, related to the restriction of the functional measure to the first Gribov region. Our results show that the prediction (from cluster decomposition) for Q(p^2) in terms of gluon and ghost propagators is better satisfied as the continuum limit is approached.
We study perturbations that break gauge symmetries in lattice gauge theories. As a paradigmatic model, we consider the three-dimensional Abelian-Higgs (AH) model with an N-component scalar field and a noncompact gauge field, which is invariant under U(1) gauge and SU(N) transformations. We consider gauge-symmetry breaking perturbations that are quadratic in the gauge field, such as a photon mass term, and determine their effect on the critical behavior of the gauge-invariant model, focusing mainly on the continuous transitions associated with the charged fixed point of the AH field theory. We discuss their relevance and compute the (gauge-dependent) exponents that parametrize the departure from the critical behavior (continuum limit) of the gauge-invariant model. We also address the critical behavior of lattice AH models with broken gauge symmetry, showing an effective enlargement of the global symmetry, from U(N) to O(2N), which reflects a peculiar cyclic renormalization-group flow in the space of the lattice AH parameters and of the photon mass.
107 - Antonin Portelli 2013
Isospin symmetry is explicitly broken in the Standard Model by the non-zero differences of mass and electric charge between the up and down quarks. Both of these corrections are expected to have a comparable size of the order of one percent relatively to hadronic energies. Although these contributions are small, they play a crucial role in hadronic and nuclear physics. In this review we explain how to properly define QCD and QED on a finite and discrete space-time so that isospin corrections to hadronic observables can be computed ab-initio. We then consider the different approaches to compute lattice correlation functions of QCD and QED observables. Finally we summarise the actual lattice results concerning the isospin corrections to the light hadron spectrum.
We study the relation between quark confinement and chiral symmetry breaking in QCD. Using lattice QCD formalism, we analytically express the various confinement indicators, such as the Polyakov loop, its fluctuations, the Wilson loop, the inter-quark potential and the string tension, in terms of the Dirac eigenmodes. In the Dirac spectral representation, there appears a power of the Dirac eigenvalue $lambda_n$ such as $lambda_n^{N_t-1}$, which behaves as a reduction factor for small $lambda_n$. Consequently, since this reduction factor cannot be cancelled, the low-lying Dirac eigenmodes give negligibly small contribution to the confinement quantities,while they are essential for chiral symmetry breaking. These relations indicate no direct, one-to-one correspondence between confinement and chiral symmetry breaking in QCD. In other words, there is some independence of quark confinement from chiral symmetry breaking, which can generally lead to different transition temperatures/densities for deconfinement and chiral restoration. We also investigate the Polyakov loop in terms of the eigenmodes of the Wilson, the clover and the domain-wall fermion kernels, respectively, and find the similar results. The independence of quark confinement from chiral symmetry breaking seems to be natural, because confinement is realized independently of quark masses and heavy quarks are also confined even without the chiral symmetry.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا