The energies of glue in the presence of a static quark-antiquark pair are calculated for separations r ranging from 0.1 fm to 4 fm and for various quark-antiquark orientations on the lattice. Our simulations use an improved gauge-field action on anisotropic space-time lattices. Discretization errors and finite volume effects are studied. We find that the spectrum does not exhibit the expected onset of the universal pi/r Goldstone excitations of the effective QCD string, even for r as large as 4 fm. Our results cast serious doubts on the validity of treating glue in terms of a fluctuating string for r below 2 fm. Retardation effects in the Upsilon system are also studied by comparing level splittings from the Born-Oppenheimer approximation with those directly obtained in simulations.
We use the S-matrix bootstrap to carve out the space of unitary, crossing symmetric and supersymmetric graviton scattering amplitudes in ten dimensions. We focus on the leading Wilson coefficient $alpha$ controlling the leading correction to maximal supergravity. The negative region $alpha<0$ is excluded by a simple dual argument based on linearized unitarity (the desert). A whole semi-infinite region $alpha gtrsim 0.14$ is allowed by the primal bootstrap (the garden). A finite intermediate region is excluded by non-perturbative unitarity (the swamp). Remarkably, string theory seems to cover all (or at least almost all) the garden from very large positive $alpha$ -- at weak coupling -- to the swamp boundary -- at strong coupling.
We investigate the string breaking mechanism in n_f=2 QCD. We discuss the lattice techniques used and present results on energy levels and mixing angle of the static BBbar|QbarQ two-state system. The string breaking is visualized, by means of an animation of the action density distribution as a function of the static colour source-antisource separation.
The present paper concludes our investigations on the QCD cross-over transition temperatures with 2+1 staggered flavours and one-link stout improvement. We extend our previous two studies [Phys. Lett. B643 (2006) 46, JHEP 0906:088 (2009)] by choosing even finer lattices ($N_t$=16) and we work again with physical quark masses. The new results on this broad cross-over are in complete agreement with our earlier ones. We compare our findings with the published results of the hotQCD collaboration. All these results are confronted with the predictions of the Hadron Resonance Gas model and Chiral Perturbation Theory for temperatures below the transition region. Our results can be reproduced by using the physical spectrum in these analytic calculations. The findings of the hotQCD collaboration can be recovered by using a distorted spectrum which takes into account lattice discretization artifacts and heavier than physical quark masses. This analysis provides a simple explanation for the observed discrepancy in the transition temperatures between our and the hotQCD collaborations.
We present a model for string breaking based on the existence of chromoelectric flux tubes. We predict the form of the long-range potential, and obtain an estimate of the string breaking length. A prediction is also obtained for the behaviour with temperature of the string breaking length near the deconfinement phase transition. We plan to use this model as a guide for a program of study of string breaking on the lattice.
A numerical study of quenched QCD for light quarks is presented using O(a) improved fermions. Particular attention is paid to the possible existence and determination of quenched chiral logarithms. A `safe region to use for chiral extrapolations appears to be at and above the strange quark mass.