Critical exponents in U(1) lattice gauge theory with a monopole term


Abstract in English

We investigate critical properties of the phase transition in the four-dimensional compact U(1) lattice gauge theory supplemented by a monopole term for values of the monopole coupling $lambda$ such that the transition is of second order. It has been previously shown that at $lambda= 0.9$ the critical exponent is already characteristic of a second-order transition and that it is different from the one of the Gaussian case. In the present study we perform a finite size analysis at $lambda=1.1$ to get information wether the value of this exponent is universal.

Download