Quark Confinement in C-periodic Cylinders at Temperatures above T_c


Abstract in English

Due to the Gauss law, a single quark cannot exist in a periodic volume, while it can exist with C-periodic boundary conditions. In a C-periodic cylinder of cross section A = L_x L_y and length L_z >> L_x, L_y containing deconfined gluons, regions of different high temperature Z(3) phases are aligned along the z-direction, separated by deconfined- deconfined interfaces. In this geometry, the free energy of a single static quark diverges in proportion to L_z. Hence, paradoxically, the quark is confined, although the temperature T is larger than T_c. At T around T_c, the confined phase coexists with the three deconfined phases. The deconfined-deconfined interfaces can be completely or incompletely wet by the confined phase. The free energy of a quark behaves differently in these two cases. In contrast to claims in the literature, our results imply that deconfined-deconfined interfaces are not Euclidean artifacts, but have observable consequences in a system of hot gluons.

Download