We discuss the application of the MPSTV non-perturbative method cite{NPM} to the operators relevant to kaon decays. This enables us to reappraise the long-standing question of the $Delta I=1/2$ rule, which involves power-divergent subtractions that cannot be evaluated in perturbation theory. We also study the mixing with dimension-six operators and discuss its implications to the chiral behaviour of the $B_K$ parameter.
We present a novel strategy to renormalize lattice operators in QCD+QED, including first order QED corrections to the non-perturbative evaluation of QCD renormalization constants. Our procedure takes systematically into account the mixed non-factorizable QCD+QED effects which were neglected in previous calculations, thus significantly reducing the systematic uncertainty on renormalization corrections. The procedure is presented here in the RI-MOM scheme, but it can be applied to other schemes (e.g. RI-SMOM) with appropriate changes. We discuss the application of this strategy to the calculation of the leading isospin breaking corrections to the leptonic decay rates $Gamma(pi_{mu 2})$ and $Gamma(K_{mu 2})$, evaluated for the first time on the lattice. The precision in the matching to the $W$-regularization scheme is improved to $mathcal{O}(alpha_{em}alpha_s(M_W))$ with respect to previous calculations. Finally, we show the updated precise result obtained for the Cabibbo-Kobayashi-Maskawa matrix element $|V_{us}|$.
Recent developments in non-perturbative renormalization for lattice QCD are reviewed with a particular emphasis on RI/MOM scheme and its variants, RI/SMOM schemes. Summary of recent developments in Schroedinger functional scheme, as well as the summary of related topics are presented. Comparison of strong coupling constant and the strange quark mass from various methods are made.
We propose a new strategy for the determination of the QCD coupling. It relies on a coupling computed in QCD with $N_{rm f} geq 3$ degenerate heavy quarks at a low energy scale $mu_{rm dec}$, together with a non-perturbative determination of the ratio $Lambda/mu_{rm dec}$ in the pure gauge theory. We explore this idea using a finite volume renormalization scheme for the case of $N_{rm f} = 3$ QCD, demonstrating that a precise value of the strong coupling $alpha_s$ can be obtained. The idea is quite general and can be applied to solve other renormalization problems, using finite or infinite volume intermediate renormalization schemes.
Renormalization constants of vector ($Z_V$) and axial-vector ($Z_A$) currents are determined non-perturbatively in quenched QCD for a renormalization group improved gauge action and a tadpole improved clover quark action using the Schrodinger functional method. Non-perturbative values of $Z_V$ and $Z_A$ turn out to be smaller than the one-loop perturbative values by $O(10%)$ at $a^{-1}approx 1$ GeV. A sizable scaling violation of meson decay constants $f_pi$ and $f_rho$ observed with the one-loop renormalization factors remains even with non-perturbative renormalization.
High luminosity accelerators have greatly increased the interest in semi-exclusive and exclusive reactions involving nucleons. The relevant theoretical information is contained in the nucleon wavefunction and can be parametrized by moments of the nucleon distribution amplitudes, which in turn are linked to matrix elements of local three-quark operators. These can be calculated from first principles in lattice QCD. Defining an RI-MOM renormalization scheme, we renormalize three-quark operators corresponding to low moments non-perturbatively and take special care of the operator mixing. After performing a scheme matching and a conversion of the renormalization scale we quote our final results in the MSbar scheme at mu=2 GeV.