Do you want to publish a course? Click here

Four-dimensional Simulation of the Hot Electroweak Phase Transition with the SU(2) Gauge-Higgs Model

78   0   0.0 ( 0 )
 Added by Yasumichi Aoki
 Publication date 1996
  fields
and research's language is English




Ask ChatGPT about the research

We study the finite-temperature phase transition of the four-dimensional SU(2) gauge-Higgs model for intermediate values of the Higgs boson mass in the range $50 lsim m_H lsim 100$GeV on a lattice with the temporal lattice size $N_t=2$. The order of the transition is systematically examined using finite size scaling methods. Behavior of the interface tension and the latent heat for an increasing Higgs boson mass is also investigated.

rate research

Read More

51 - Yasumichi Aoki 1996
We study the finite-temperature electroweak phase transition of the minimal standard model within the four-dimensional SU(2) gauge-Higgs model. Monte Carlo simulations are performed for intermediate values of the Higgs boson mass in the range $50 lesssim M_H lesssim 100$GeV on a lattice with the temporal size $N_t=2$. The order of the transition is systematically examined using finite-size scaling methods. Behavior of the interface tension and the latent heat for an increasing Higgs boson mass is also investigated. Our results suggest that the first-order transition terminates around $M_H sim 80$GeV.
We study the electroweak phase transition by lattice simulations of an effective 3-dimensional theory, for a Higgs mass of about $35 GeV$. In the broken symmetry phase our results on masses and the Higgs condensate are consistent with 2-loop perturbative results. However, we find a non-perturbative lowering of the transition temperature, similar to the one previously found at $m_H = 80 GeV$. For the symmetric phase, bound state masses and the static force are determined and compared with results for pure $SU(2)$ theory.
174 - F.Karsch , M.L.Laursen , T.Neuhaus 1992
Using a variation of Lueschers geometric charge definition for SU(2) lattice gauge theory, we have managed to give a geometric expression for its Chern-Simons ter. From this definition we have checked the periodic structure. we determined the Chern-Simons density for symmetric and asymmetric lattices near the critical region in the SU(2) Higgs model. The data indicate that tunneling is increased at high temperature.
We consider a non-Abelian dark SU(2)$_{rm D}$ model where the dark sector couples to the Standard Model (SM) through a Higgs portal. We investigate two different scenarios of the dark sector scalars with $Z_2$ symmetry, with Higgs portal interactions that can introduce mixing between the SM Higgs boson and the SM singlet scalars in the dark sector. We utilize the existing collider results of the Higgs signal rate, direct heavy Higgs searches, and electroweak precision observables to constrain the model parameters. The $text{SU(2)}_{text{D}}$ partially breaks into $text{U(1)}_{text{D}}$ gauge group by the scalar sector. The resulting two stable massive dark gauge bosons and pseudo-Goldstone bosons can be viable cold dark matter candidates, while the massless gauge boson from the unbroken $text{U(1)}_{text{D}}$ subgroup is a dark radiation and can introduce long-range attractive dark matter (DM) self-interaction, which can alleviate the small-scale structure issues. We study in detail the pattern of strong first-order phase transition and gravitational wave (GW) production triggered by the dark sector symmetry breaking, and further evaluate the signal-to-noise ratio for several proposed space interferometer missions. We conclude that the rich physics in the dark sector may be observable with the current and future measurements at colliders, DM experiments, and GW interferometers.
We study the electroweak phase transition by lattice simulations of an effective 3--dimensional theory, for a Higgs mass of about 70 GeV. Exploiting, among others, a variant of the equal weight criterion of phase equilibrium, we obtain transition temperature, latent heat and surface tension, and compare with M_H approx 35 GeV. In the broken phase masses and Higgs condensates are compared to perturbation theory. For the symmetric phase, bound state masses and the static force are determined.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا